mun*_*nch 3 haskell functional-programming
我的Haskell课程有这个任务,但我觉得很难.如果你能帮助一点.你有一个迷宫
maze = ["x xxx",
"x x",
"x x x",
"x x ",
"xxxxx"]
Run Code Online (Sandbox Code Playgroud)
而且你只能穿过空间.你从(0,1)开始,函数必须返回一个字符串,其中包含逃避迷宫的方向:
f - forward
r- turn right
l - turn left
Run Code Online (Sandbox Code Playgroud)
如果你有一个选择,你总是喜欢向前,向前向左.对于当前的例子,答案是ffllffrffrfflf
提前致谢
data Direction = N | W | S | E deriving (Show,Eq)
maze = ["x xxx",
"x x",
"x x x",
"x x ",
"xxxxx"]
d = 's'
pos = (0,1)
fpath d pos | fst pos == (length maze - 1) = ""
| snd (pos) ==0 || (snd ( pos ) == ((length (maze!!0))-1)) = ""
| rightPossible d pos = "r" ++ ( fpath (rightRotate d) pos )
| forwardPossible d pos = "f" ++ ( fpath d (nstep d pos) )
| True = "l" ++ fpath (leftRotate d) pos
where nstep :: Direction -> (Int, Int) -> (Int, Int) {-next step-}
nstep N (x,y) = (x-1,y)
nstep W (x,y) = (x,y-1)
nstep S (x,y) = (x+1,y)
nstep E (x,y) = (x,y+1)
rightPossible :: Direction -> (Int, Int) -> Bool
rightPossible N (x,y)= (maze !! x)!! (y+1) == ' '
rightPossible W (x,y)= (maze !! (x-1))!! y == ' '
rightPossible S (x,y)= (maze !! x)!! (y-1) == ' '
rightPossible E (x,y)= (maze !! (x+1))!! y == ' '
rightRotate :: Direction -> Direction
rightRotate N = E
rightRotate W = N
rightRotate S = W
rightRotate E = S
forwardPossible :: Direction -> (Int, Int) -> Bool
forwardPossible N (x,y)= ((maze !! (x-1))!! y) == ' '
forwardPossible W (x,y)= ((maze !! x)!! (y-1)) == ' '
forwardPossible S (x,y)= ((maze !! (x+1))!! y) == ' '
forwardPossible E (x,y)= ((maze !! x)!! (y+1)) == ' '
leftRotate :: Direction -> Direction
leftRotate N = W
leftRotate W = S
leftRotate S = E
leftRotate E = N
Run Code Online (Sandbox Code Playgroud)
我看到的第一件事是,你有一个优先问题.表达式(maze !! x)!! y-1被解析为,((maze !! x)!! y)-1而您希望将其解析为(maze !! x)!! (y-1).添加大括号来解决此问题.
添加此内容后,您的代码会编译,尽管您的算法似乎已被破坏.也许其他人可以帮助你.
一些编码建议:
使用模式匹配而不是额外的case语句.代替
nstep d (x,y) {-next step-}
| d == 'n' = (x-1,y)
| d == 'w' = (x,y-1)
| d == 's' = (x+1,y)
| d == 'e' = (x,y+1)
Run Code Online (Sandbox Code Playgroud)
写
nstep 'n' (x,y) = (x-1,y)
nstep 'w' (x,y) = (x,y-1)
nstep 's' (x,y) = (x+1,y)
nstep 'e' (x,y) = (x,y+1)
Run Code Online (Sandbox Code Playgroud)编写自己的data类型而不是依赖于字符.例如,您可以为方向创建自己的数据类型:
data Direction = N | W | S | E deriving (Show,Eq)
Run Code Online (Sandbox Code Playgroud)