整数 NxN 矩阵的精确行列式

pyc*_*der 5 python algorithm math linear-algebra

行列式定义只有加法、减法和乘法。因此,具有整数元素的矩阵的行列式必须是 integer

但是numpy.linalg.det()返回一个“稍微关闭”的浮点数:

>>> import numpy
>>> M = [[-1 if i==j else 1 for j in range(7)] for i in range(7)]
>>> numpy.linalg.det(M)
319.99999999999994
Run Code Online (Sandbox Code Playgroud)

对于更大的矩阵,情况会变得更糟:

>>> M = [[-1024 if i==j else 1024 for j in range(7)] for i in range(7)]
>>> numpy.linalg.det(M)
3.777893186295698e+23
>>> "%.0f" % numpy.linalg.det(M)
'377789318629569805156352'
Run Code Online (Sandbox Code Playgroud)

这是错误的!我确定正确答案是:

>>> 320 * 1024**7
377789318629571617095680
Run Code Online (Sandbox Code Playgroud)

当然,对于一个大矩阵,它可能是一个相当长的整数。但是python内置了长整数。

如何获得行列式的精确整数值而不是近似浮点值?

pyc*_*der 11

计算整数矩阵行列式的一种简单实用的方法是Bareiss 算法

def det(M):
    M = [row[:] for row in M] # make a copy to keep original M unmodified
    N, sign, prev = len(M), 1, 1
    for i in range(N-1):
        if M[i][i] == 0: # swap with another row having nonzero i's elem
            swapto = next( (j for j in range(i+1,N) if M[j][i] != 0), None )
            if swapto is None:
                return 0 # all M[*][i] are zero => zero determinant
            M[i], M[swapto], sign = M[swapto], M[i], -sign
        for j in range(i+1,N):
            for k in range(i+1,N):
                assert ( M[j][k] * M[i][i] - M[j][i] * M[i][k] ) % prev == 0
                M[j][k] = ( M[j][k] * M[i][i] - M[j][i] * M[i][k] ) // prev
        prev = M[i][i]
    return sign * M[-1][-1]
Run Code Online (Sandbox Code Playgroud)

该算法相当快(O(N³)复杂度)。

它是一个整数保留算法。它确实有一个部门。但只要 M 的所有元素都是整数,所有中间计算也将是整数(除法余数为零)。

作为奖励,如果您删除该行并将整数除法替换为常规除法,则相同的代码适用于分数/浮点/复数元素。assert///


PS:另一种选择是使用sympy而不是 numpy:

>>> import sympy
>>> sympy.Matrix([ [-1024 if i==j else 1024 for j in range(7)] for i in range(7) ]).det()
377789318629571617095680
Run Code Online (Sandbox Code Playgroud)

但不知何故,这比上述det()功能慢得多。

# Performance test: `numpy.linalg.det(M)` vs `det(M)` vs `sympy.Matrix(M).det()`
import timeit
def det(M):
    ...
M = [[-1024 if i==j else 1024 for j in range(7)] for i in range(7)]
print(timeit.repeat("numpy.linalg.det(M)", setup="import numpy; from __main__ import M", number=100, repeat=5))
#: [0.0035009384155273, 0.0033931732177734, 0.0033941268920898, 0.0033800601959229, 0.0033988952636719]
print(timeit.repeat("det(M)", setup="from __main__ import det, M", number=100, repeat=5))
#: [0.0171120166778564, 0.0171020030975342, 0.0171608924865723, 0.0170948505401611, 0.0171010494232178]
print(timeit.repeat("sympy.Matrix(M).det()", setup="import sympy; from __main__ import M", number=100, repeat=5))
#: [0.9561479091644287, 0.9564781188964844, 0.9539868831634521, 0.9536828994750977, 0.9546608924865723]
Run Code Online (Sandbox Code Playgroud)

概括:

  • det(M)比 慢 5 倍以上numpy.linalg.det(M)
  • det(M)快〜50倍sympy.Matrix(M).det()

没有assert线它会变得更快。


kay*_*ya3 6

@pycoder 的答案是首选解决方案;为了进行比较,我使用Fraction允许对有理数进行精确算术的类编写了一个高斯消元函数。在相同的基准测试中,它比 Bareiss 算法慢约 11 倍。

from fractions import Fraction

def det(matrix):
    matrix = [[Fraction(x, 1) for x in row] for row in matrix]
    n = len(matrix)
    d, sign = 1, 1
    for i in range(n):
        if matrix[i][i] == 0:
            j = next((j for j in range(i + 1, n) if matrix[j][i] != 0), None)
            if j is None:
                return 0
            matrix[i], matrix[j] = matrix[j], matrix[i]
            sign = -sign
        d *= matrix[i][i]
        for j in range(i + 1, n):
            factor = matrix[j][i] / matrix[i][i]
            for k in range(i + 1, n):
                matrix[j][k] -= factor * matrix[i][k]
    return int(d) * sign
Run Code Online (Sandbox Code Playgroud)