Ido*_* Do 5 python runtime-error deep-learning pytorch
我在 gpu 上训练时保存了一个检查点。重新加载检查点并继续训练后,我收到以下错误。
Traceback (most recent call last):
File "main.py", line 140, in <module>
train(model,optimizer,train_loader,val_loader,criteria=args.criterion,epoch=epoch,batch=batch)
File "main.py", line 71, in train
optimizer.step()
File "/opt/conda/lib/python3.7/site-packages/torch/autograd/grad_mode.py", line 26, in decorate_context
return func(*args, **kwargs)
File "/opt/conda/lib/python3.7/site-packages/torch/optim/sgd.py", line 106, in step
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
Run Code Online (Sandbox Code Playgroud)
我的训练代码是:
def train(model,optimizer,train_loader,val_loader,criteria,epoch=0,batch=0):
batch_count = batch
if criteria == 'l1':
criterion = L1_imp_Loss()
elif criteria == 'l2':
criterion = L2_imp_Loss()
if args.gpu and torch.cuda.is_available():
model.cuda()
criterion = criterion.cuda()
print(f'{datetime.datetime.now().time().replace(microsecond=0)} Starting to train..')
while epoch <= args.epochs-1:
print(f'********{datetime.datetime.now().time().replace(microsecond=0)} Epoch#: {epoch+1} / {args.epochs}')
model.train()
interval_loss, total_loss= 0,0
for i , (input,target) in enumerate(train_loader):
batch_count += 1
if args.gpu and torch.cuda.is_available():
input, target = input.cuda(), target.cuda()
input, target = input.float(), target.float()
pred = model(input)
loss = criterion(pred,target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
....
Run Code Online (Sandbox Code Playgroud)
保存过程发生在每个纪元结束后。
torch.save({'epoch': epoch,'batch':batch_count,'model_state_dict': model.state_dict(),'optimizer_state_dict':
optimizer.state_dict(),'loss': total_loss/len(train_loader),'train_set':args.train_set,'val_set':args.val_set,'args':args}, f'{args.weights_dir}/FastDepth_Final.pth')
Run Code Online (Sandbox Code Playgroud)
我不知道为什么我会收到这个错误。args.gpu == True ,我将模型、所有数据和损失函数传递给 cuda,不知何故 cpu 上仍然有一个张量,有人能弄清楚出了什么问题吗?
谢谢。
小智 12
对我来说它可以添加
model.to('cuda')
Run Code Online (Sandbox Code Playgroud)
设置模型后立即:
class Agent:
def __init__(self):
self.n_game = 0
self.epsilon = 0 # Randomness
self.gamma = 0.9 # discount rate
self.memory = deque(maxlen=MAX_MEMORY) # popleft()
self.model = Linear_QNet(11,256,3) # here
self.model.to('cuda') # and here
self.trainer = QTrainer(self.model,lr=LR,gamma=self.gamma)
Run Code Online (Sandbox Code Playgroud)
Aay*_*hah 11
如果您像我一样仍然面临问题,那么该问题可能与“标记器”有关。您将模型带到GPU ,但不是标记化的 ID!
所以,请确保您遵循以下步骤:
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
model.to(device)
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device) # This line.
Run Code Online (Sandbox Code Playgroud)
然后你就可以安全地从模型中进行推断了!