Eug*_*hev 7 python autoencoder deep-learning keras tensorflow
我正在尝试创建变分自动编码器,这意味着我需要自定义损失函数。问题是,在损失函数内部,我有 2 个不同的损失 - mse 和散度。mse是Tensor,divergence是KerasTensor(由于色散和mu,我从编码器中退出)。我收到这样的错误:
类型错误:无法将符号 Keras 输入/输出转换为 numpy 数组。此错误可能表明您正在尝试将符号值传递给 NumPy 调用,但该调用不受支持。或者,您可能尝试将 Keras 符号输入/输出传递到未注册调度的 TF API,从而阻止 Keras 自动将 API 调用转换为功能模型中的 lambda 层。
这是我的架构:
import tensorflow.keras as keras
from keras.layers import Input, Dense, Flatten, Reshape
from keras.layers import Conv2D, MaxPooling2D, UpSampling2D, Conv2DTranspose
from keras.models import Model
import tensorflow as tf
import keras.backend as K
encoded_dim = 2
class Sampling(keras.layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = K.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
img = Input((28,28,1), name='img')
x = Conv2D(32, (3,3), padding='same', activation='relu')(img)
x = MaxPooling2D()(x)
x = Conv2D(64, (3,3), padding='same', activation='relu')(x)
x = MaxPooling2D()(x)
x = Flatten()(x)
x = Dense(16, activation='relu')(x)
mu = Dense(encoded_dim, name='mu')(x)
sigma = Dense(encoded_dim, name='sigma')(x)
z = Sampling()([mu,sigma])
# print(mu)
xx = Input((encoded_dim,))
x = Dense(7*7*64, activation='relu')(xx)
x = Reshape((7,7,64))(x)
x = Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)
out = Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)
encoder = Model(img,z, name='encoder')
decoder = Model(xx,out,name='decoder')
autoencoder = Model(img,decoder(encoder(img)),name='autoencoder')
Run Code Online (Sandbox Code Playgroud)
以及损失函数:
def vae_loss(x, y):
loss = tf.reduce_mean(K.square(x-y))
kl_loss = -0.5 * tf.reduce_mean(1 + sigma - tf.square(mu) - tf.exp(sigma))
print(type(loss))
print(type(kl_loss))
return loss + kl_loss
autoencoder.compile(optimizer='adam',
loss = vae_loss)
autoencoder.fit(train,train,
epochs=1,
batch_size=60,
shuffle=True,
verbose = 2)
Run Code Online (Sandbox Code Playgroud)
损失和lk_loss的类型:
类“tensorflow.python.framework.ops.Tensor”
类“tensorflow.python.keras.engine.keras_tensor.KerasTensor”
你需要将mu和传递sigma给你的损失函数。vae_loss现在接受 4 个输入:
def vae_loss(x, y, mu, sigma):
loss = tf.reduce_mean(K.square(x-y))
kl_loss = -0.5 * tf.reduce_mean(1 + sigma - tf.square(mu) - tf.exp(sigma))
return loss + kl_loss
Run Code Online (Sandbox Code Playgroud)
您可以在模型中使用它,只需使用autoencoder.add_loss.
同样重要的是,encoder不仅返回z,还mu返回 和sigma。
z, mu, sigma = encoder(img)
out = decoder(z)
autoencoder = Model(img, out, name='autoencoder')
autoencoder.add_loss(vae_loss(img, out, mu, sigma)) # <======= add_loss
autoencoder.compile(loss=None, optimizer='adam')
Run Code Online (Sandbox Code Playgroud)
这里是正在运行的笔记本https://colab.research.google.com/drive/1r5lMZ2Dc_Lq4KJDqiirXla1qfDVmdwxW?usp=sharing
| 归档时间: |
|
| 查看次数: |
6852 次 |
| 最近记录: |