Cla*_*ark 4 python artificial-intelligence machine-learning genetic-algorithm
我使用 pyGAD Python 库提供的遗传算法实现训练了一组神经网络。到目前为止我编写的代码如下:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import pygad.gann
import time
import pickle
ret = -1
n_sect = 174
population_size = 500
num_parents_mating = 4
num_generations = 1000
mutation_percent = 5
parent_selection_type = "rank"
crossover_type = "two_points"
mutation_type = "random"
keep_parents = 1
init_range_low = -2
init_range_high = 5
n_div = 15
data = pd.read_csv("delta_results/sub_delta_{}.csv".format(n_sect), index_col=0)
data.index = pd.to_datetime(data.index)
data = list(data["Delta"])
function_inputs = np.array([data[i:i+n_div][:ret] for i in range(0, len(data), n_div)])
required_outputs = np.array([[data[i:i+n_div][ret]] for i in range(0, len(data), n_div)])
input_layer_size = function_inputs.shape[1]
n_hidden_layers = 2
hidden_layer_1_size = input_layer_size - 2
hidden_layer_2_size = input_layer_size - 4
output_layer_size = 1
population = pygad.gann.GANN(
num_solutions=population_size,
num_neurons_input=input_layer_size,
num_neurons_output=output_layer_size,
num_neurons_hidden_layers=[hidden_layer_1_size, hidden_layer_2_size], # 2 Hidden Layers
hidden_activations=["relu", "relu"],
output_activation="None"
)
population_vectors = pygad.gann.population_as_vectors(population_networks=population.population_networks)
initial_population = population_vectors.copy()
def normalize(x):
return x/np.linalg.norm(x, ord=2, axis=0, keepdims=True)
def fitness(solution, solution_index):
prediction = pygad.nn.predict(last_layer=population.population_networks[solution_index], data_inputs=function_inputs, problem_type="regression")
prediction = np.array(prediction)
error = (prediction+0.0001)-required_outputs
fitness = np.nan_to_num((np.abs(error)**(-2))).astype(np.float64)
solution_fitness = np.sum(normalize(fitness))
return solution_fitness
def on_generation(population_instance):
global population
population_matrices = pygad.gann.population_as_matrices(population_networks=population.population_networks, population_vectors=population_instance.population)
population.update_population_trained_weights(population_trained_weights=population_matrices)
population_instance = pygad.GA(
num_generations=num_generations,
num_parents_mating=num_parents_mating,
initial_population=initial_population,
fitness_func=fitness,
mutation_percent_genes=mutation_percent,
init_range_low=init_range_low,
init_range_high=init_range_high,
parent_selection_type=parent_selection_type,
crossover_type=crossover_type,
mutation_type=mutation_type,
keep_parents=keep_parents,
on_generation=on_generation
)
saved_population = pygad.load(filename=".../population_data_v2")
best_solution = saved_population.best_solution()
print("Population Best Solution Info:\n| Attributes:\n{}\n| Fitness: {}\n| Solution Index: {}".format(best_solution[0], best_solution[1], best_solution[2]))
saved_population.plot_result()
Run Code Online (Sandbox Code Playgroud)
运行遗传算法后,我将群体数据保存到一个名为population_data_v2.pkl(上面未显示)的文件中 - 并且该文件已成功创建和保存。
然而,一旦我打开文件,我不知道如何从群体中找到最佳神经网络的信息。
我得到的只是解决方案的 nd.numpy.array (best_solution[0]),我不知道如何从中查询,也不知道如何传入函数输入并查看最佳解决方案的预测是什么。
任何帮助将不胜感激!
小智 5
感谢您使用PyGAD。
我发现您正确构建了该示例。只需简单的 3 个步骤,您就可以轻松使用最佳解决方案进行预测。
请注意,每一代之后,population属性都会由最新的种群更新。这意味着 PyGAD 完成所有世代后,最后一个群体将保存在population属性中。
使用该pygad.load()函数加载保存的模型后,就像在适应度函数中所做的那样,您可以使用该population属性来恢复网络的权重,如下所示:
population_matrices = pygad.gann.population_as_matrices(population_networks=population.population_networks, population_vectors=saved_population.population)
population.update_population_trained_weights(population_trained_weights=population_matrices)
Run Code Online (Sandbox Code Playgroud)
该best_solution()方法返回 3 个输出,其中第三个输出代表最佳解决方案的索引。您可以使用它进行预测,如下所示:
best_solution = saved_population.best_solution()
prediction = pygad.nn.predict(last_layer=population.population_networks[best_solution[2]], data_inputs=function_inputs, problem_type="regression")
Run Code Online (Sandbox Code Playgroud)
最后,您可以打印预测值:
prediction = np.array(prediction)
print("Prediction of the best solution: {pred}".format(pred=prediction))
Run Code Online (Sandbox Code Playgroud)
根据上述讨论,以下是可帮助您根据最佳解决方案进行预测的代码:
population_matrices = pygad.gann.population_as_matrices(population_networks=population.population_networks, population_vectors=saved_population.population)
population.update_population_trained_weights(population_trained_weights=population_matrices)
best_solution = saved_population.best_solution()
prediction = pygad.nn.predict(last_layer=population.population_networks[best_solution[2]], data_inputs=function_inputs, problem_type="regression")
prediction = np.array(prediction)
print("Prediction of the best solution: {pred}".format(pred=prediction))
Run Code Online (Sandbox Code Playgroud)
如果出现问题,请告诉我。
再次感谢您使用PyGAD。
| 归档时间: |
|
| 查看次数: |
2458 次 |
| 最近记录: |