Ben*_*ier 4 python nvidia pytorch
如果我运行以下命令:
import torch
import sys
print('A', sys.version)
print('B', torch.__version__)
print('C', torch.cuda.is_available())
print('D', torch.backends.cudnn.enabled)
device = torch.device('cuda')
print('E', torch.cuda.get_device_properties(device))
print('F', torch.tensor([1.0, 2.0]).cuda())
Run Code Online (Sandbox Code Playgroud)
我明白了:
A 3.7.5 (default, Nov 7 2019, 10:50:52)
[GCC 8.3.0]
B 1.8.0.dev20210115+cu110
C True
D True
E _CudaDeviceProperties(name='GeForce RTX 3090', major=8, minor=6, total_memory=24267MB, multi_processor_count=82)
F
<stacktrace>
CUDA error: no kernel image is available for execution on the device
Run Code Online (Sandbox Code Playgroud)
关于我的系统的更多信息:
在这里找到了解决我的问题的方法:https : //github.com/pytorch/pytorch/issues/31285#issuecomment-739139454
pip install --pre torch torchvision -f https://download.pytorch.org/whl/nightly/cu110/torch_nightly.html -U
Run Code Online (Sandbox Code Playgroud)
然后我的代码片段给出:
A 3.7.5 (default, Nov 7 2019, 10:50:52)
[GCC 8.3.0]
B 1.8.0.dev20210115+cu110
C True
D True
E _CudaDeviceProperties(name='GeForce RTX 3090', major=8, minor=6, total_memory=24267MB, multi_processor_count=82)
F tensor([1., 2.], device='cuda:0')
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
6770 次 |
| 最近记录: |