Pandas 数据框列减法,处理 NaN

Mit*_*har 4 python dataframe pandas

例如,我有一个数据框

df = pd.DataFrame([(np.nan, .32), (.01, np.nan), (np.nan, np.nan), (.21, .18)],
                  columns=['A', 'B'])
        A   B
0   NaN     0.32
1   0.01    NaN
2   NaN     NaN
3   0.21    0.18
Run Code Online (Sandbox Code Playgroud)

我想减去列BA

df['diff'] = df['A'] - df['B']

    A     B      diff
0   NaN   0.32   NaN
1   0.01  NaN    NaN
2   NaN   NaN    NaN
3   0.21  0.18   0.03
Run Code Online (Sandbox Code Playgroud)

如果其中一列是 ,则差值返回 NaN NaN。为了克服这一点,我使用fillna

df['diff'] = df['A'].fillna(0) - df['B'].fillna(0)

    A     B      diff
0   NaN   0.32   -0.32
1   0.01  NaN    0.01
2   NaN   NaN    0.00
3   0.21  0.18   0.03
Run Code Online (Sandbox Code Playgroud)

这解决了NaN进入 diff 列的问题,但对于索引 2,结果是0,而我想要差异,NaN因为 A 列和 B 列是NaN

NaN如果两列都是 NaN,有没有办法明确告诉熊猫输出?

jez*_*ael 5

Series.subfill_value=0参数一起使用:

df['diff'] = df['A'].sub(df['B'], fill_value=0)
print (df)
      A     B  diff
0   NaN  0.32 -0.32
1  0.01   NaN  0.01
2   NaN   NaN   NaN
3  0.21  0.18  0.03
Run Code Online (Sandbox Code Playgroud)

如果需要替换 NaN 来0添加Series.fillna

df['diff'] = df['A'].sub(df['B'], fill_value=0).fillna(0)
print (df)
      A     B  diff
0   NaN  0.32 -0.32
1  0.01   NaN  0.01
2   NaN   NaN  0.00
3  0.21  0.18  0.03
Run Code Online (Sandbox Code Playgroud)