我得到了宽格式的数据。每行都与当前表外部的变量有关,以及与该变量相关的可能值。我正在尝试:(1)转为长格式,以及(2)嵌套转置值。
library(tibble)
df_1 <-
tribble(~key, ~values.male, ~values.female, ~values.red, ~values.green, ~value,
"gender", 0.5, 0.5, NA, NA, NA,
"age", NA, NA, NA, NA, "50",
"color", NA, NA, TRUE, FALSE, NA,
"time_of_day", NA, NA, NA, NA, "noon")
## # A tibble: 4 x 6
## key values.male values.female values.red values.green value
## <chr> <dbl> <dbl> <lgl> <lgl> <chr>
## 1 gender 0.5 0.5 NA NA NA
## 2 age NA NA NA NA 50
## 3 color NA NA TRUE FALSE NA
## 4 time_of_day NA NA NA NA noon
Run Code Online (Sandbox Code Playgroud)
在这个例子中,我们看到gender可以有female = 0.5和male = 0.5。另一方面,age只能有一个值50。从第 3 行我们了解到color可以具有red = TRUE和green = FALSE、 和 的值time_of_day = noon。
因此,透视表应采用以下嵌套形式:
my_pivoted_df <-
structure(
list(
var_name = c("gender", "age", "color", "time_of_day"),
vals = list(
structure(
list(
level = c("male", "female"),
value = c(0.5,
0.5)
),
row.names = c(NA, -2L),
class = c("tbl_df", "tbl", "data.frame")
),
"50",
structure(
list(
level = c("red", "green"),
value = c(TRUE,
FALSE)
),
row.names = c(NA, -2L),
class = c("tbl_df", "tbl", "data.frame")
),
"noon"
)
),
row.names = c(NA, -4L),
class = c("tbl_df", "tbl",
"data.frame")
)
## # A tibble: 4 x 2
## var_name vals
## <chr> <list>
## 1 gender <tibble [2 x 2]>
## 2 age <chr [1]>
## 3 color <tibble [2 x 2]>
## 4 time_of_day <chr [1]>
Run Code Online (Sandbox Code Playgroud)
有几个问题df_1。首先,当前的列命名不方便。诸如此类的标头value并不理想,因为它们与pivot_longer()的".value"机制相冲突。其次,当有多个选项(例如,“红色”和“绿色”表示)时, df_1has values(复数形式),但是(单数)当 的选项只有一个时(例如 with )。以下是我未成功的代码,受此答案启发。keycolorvaluekeyage
library(tidyr)
library(dplyr)
df_1 %>%
rename_with( ~ paste(.x, "single", sep = "."), .cols = value) %>% ## changed the header because otherwise it breaks
pivot_longer(cols = starts_with("val"),
names_to = c("whatevs", ".value"), names_sep = "\\.")
## # A tibble: 8 x 7
## key whatevs male female red green single
## <chr> <chr> <dbl> <dbl> <lgl> <lgl> <chr>
## 1 gender values 0.5 0.5 NA NA NA
## 2 gender value NA NA NA NA NA
## 3 age values NA NA NA NA NA
## 4 age value NA NA NA NA 50
## 5 color values NA NA TRUE FALSE NA
## 6 color value NA NA NA NA NA
## 7 time_of_day values NA NA NA NA NA
## 8 time_of_day value NA NA NA NA noon
Run Code Online (Sandbox Code Playgroud)
我缺乏一些争论的技巧来解决这个问题。
实现您想要的结果的 tidyverse 方法可能如下所示:
\n\nlibrary(tibble)\n\ndf_1 <-\n tribble(~key, ~values.male, ~values.female, ~values.red, ~values.green, ~value,\n "gender", 0.5, 0.5, NA, NA, NA,\n "age", NA, NA, NA, NA, "50",\n "color", NA, NA, TRUE, FALSE, NA,\n "time_of_day", NA, NA, NA, NA, "noon")\n\nlibrary(tidyr)\nlibrary(dplyr)\nlibrary(purrr)\n\ndf_pivoted <- df_1 %>% \n mutate(across(everything(), as.character)) %>% \n pivot_longer(-key, names_to = "level", names_prefix = "^values\\\\.", values_drop_na = TRUE) %>% \n group_by(key) %>% \n nest() %>% \n mutate(data = map(data, ~ if (all(.x$level == "value")) deframe(.x) else .x))\ndf_pivoted\n#> # A tibble: 4 x 2\n#> # Groups: key [4]\n#> key data \n#> <chr> <list> \n#> 1 gender <tibble [2 \xc3\x97 2]>\n#> 2 age <chr [1]> \n#> 3 color <tibble [2 \xc3\x97 2]>\n#> 4 time_of_day <chr [1]>\nRun Code Online (Sandbox Code Playgroud)\n编辑在您对所需结果的评论中进行澄清后,我们可以简单地删除作为结尾的映射语句(这基本上是为了将没有级别的类别的 tibbles 转换为向量),并在嵌套之前添加一个 mutate 语句以替换对于没有 的类别,级别为 NA level:
pivot_nest <- function(x) {\n mutate(x, across(everything(), as.character)) %>% \n pivot_longer(-key, names_to = "level", names_prefix = "^values\\\\.", values_drop_na = TRUE) %>% \n group_by(key) %>% \n mutate(level = ifelse(all(level == "value"), NA_character_, level)) %>% \n nest() \n}\n\ndf_pivoted <- df_1 %>% \n pivot_nest()\ndf_pivoted\n#> # A tibble: 4 x 2\n#> # Groups: key [4]\n#> key data \n#> <chr> <list> \n#> 1 gender <tibble [2 \xc3\x97 2]>\n#> 2 age <tibble [1 \xc3\x97 2]>\n#> 3 color <tibble [2 \xc3\x97 2]>\n#> 4 time_of_day <tibble [1 \xc3\x97 2]>\ndf_pivoted$data\n#> [[1]]\n#> # A tibble: 2 x 2\n#> level value\n#> <chr> <chr>\n#> 1 male 0.5 \n#> 2 male 0.5 \n#> \n#> [[2]]\n#> # A tibble: 1 x 2\n#> level value\n#> <chr> <chr>\n#> 1 <NA> 50 \n#> \n#> [[3]]\n#> # A tibble: 2 x 2\n#> level value\n#> <chr> <chr>\n#> 1 red TRUE \n#> 2 red FALSE\n#> \n#> [[4]]\n#> # A tibble: 1 x 2\n#> level value\n#> <chr> <chr>\n#> 1 <NA> noon\n\ndf_2 <- tribble(~key, ~value, "age", "50", "income", "100000", "time_of_day", "noon")\n\ndf_pivoted2 <- df_2 %>% \n pivot_nest()\ndf_pivoted2\n#> # A tibble: 3 x 2\n#> # Groups: key [3]\n#> key data \n#> <chr> <list> \n#> 1 age <tibble [1 \xc3\x97 2]>\n#> 2 income <tibble [1 \xc3\x97 2]>\n#> 3 time_of_day <tibble [1 \xc3\x97 2]>\ndf_pivoted2$data\n#> [[1]]\n#> # A tibble: 1 x 2\n#> level value\n#> <chr> <chr>\n#> 1 <NA> 50 \n#> \n#> [[2]]\n#> # A tibble: 1 x 2\n#> level value \n#> <chr> <chr> \n#> 1 <NA> 100000\n#> \n#> [[3]]\n#> # A tibble: 1 x 2\n#> level value\n#> <chr> <chr>\n#> 1 <NA> noon\nRun Code Online (Sandbox Code Playgroud)\n
| 归档时间: |
|
| 查看次数: |
102 次 |
| 最近记录: |