Kin*_*ugo 6 python dataset pytorch torchvision pytorch-dataloader
我正在关注DCGAN教程。每当我尝试加载 CelebA 数据集时,torchvision 都会耗尽我所有的运行时内存(12GB)并且运行时崩溃。我正在寻找如何在不占用运行时资源的情况下加载数据集并将转换应用于数据集的方法。
这是导致问题的代码部分。
# Root directory for the dataset
data_root = 'data/celeba'
# Spatial size of training images, images are resized to this size.
image_size = 64
celeba_data = datasets.CelebA(data_root,
download=True,
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
]))
Run Code Online (Sandbox Code Playgroud)
PyTorch版本:1.7.1+cu101
是否调试版本:False
用于构建 PyTorch 的 CUDA:10.1
用于构建 PyTorch 的 ROCM:N/A
操作系统:Ubuntu 18.04.5 LTS (x86_64)
GCC版本:(Ubuntu 7.5.0-3ubuntu1~18.04)7.5.0
Clang 版本:6.0.0-1ubuntu2 (tags/RELEASE_600/final)
CMake版本:版本3.12.0
Python版本:3.6(64位运行时)
CUDA 是否可用: 是
CUDA 运行时版本:10.1.243
GPU型号和配置:GPU 0:Tesla T4
Nvidia驱动程序版本:418.67
cuDNN版本:/usr/lib/x86_64-linux-gnu/libcudnn.so.7.6.5
HIP 运行时版本:不适用
MIOpen 运行时版本:不适用
相关库的版本:
我尝试过的一些事情是:
# Download the dataset only
datasets.CelebA(data_root, download=True)
# Load the dataset here
celeba_data = datasets.CelebA(data_root, download=False, transforms=...)
Run Code Online (Sandbox Code Playgroud)
ImageFolder数据集类而不是CelebA类。例如:# Download the dataset only
datasets.CelebA(data_root, download=True)
# Load the dataset using the ImageFolder class
celeba_data = datasets.ImageFolder(data_root, transforms=...)
Run Code Online (Sandbox Code Playgroud)
在这两种情况下,内存问题仍然存在。
我没有找到解决内存问题的方法。不过,我想出了一个解决方法:自定义数据集。这是我的实现:
import os
import zipfile
import gdown
import torch
from natsort import natsorted
from PIL import Image
from torch.utils.data import Dataset
from torchvision import transforms
## Setup
# Number of gpus available
ngpu = 1
device = torch.device('cuda:0' if (
torch.cuda.is_available() and ngpu > 0) else 'cpu')
## Fetch data from Google Drive
# Root directory for the dataset
data_root = 'data/celeba'
# Path to folder with the dataset
dataset_folder = f'{data_root}/img_align_celeba'
# URL for the CelebA dataset
url = 'https://drive.google.com/uc?id=1cNIac61PSA_LqDFYFUeyaQYekYPc75NH'
# Path to download the dataset to
download_path = f'{data_root}/img_align_celeba.zip'
# Create required directories
if not os.path.exists(data_root):
os.makedirs(data_root)
os.makedirs(dataset_folder)
# Download the dataset from google drive
gdown.download(url, download_path, quiet=False)
# Unzip the downloaded file
with zipfile.ZipFile(download_path, 'r') as ziphandler:
ziphandler.extractall(dataset_folder)
## Create a custom Dataset class
class CelebADataset(Dataset):
def __init__(self, root_dir, transform=None):
"""
Args:
root_dir (string): Directory with all the images
transform (callable, optional): transform to be applied to each image sample
"""
# Read names of images in the root directory
image_names = os.listdir(root_dir)
self.root_dir = root_dir
self.transform = transform
self.image_names = natsorted(image_names)
def __len__(self):
return len(self.image_names)
def __getitem__(self, idx):
# Get the path to the image
img_path = os.path.join(self.root_dir, self.image_names[idx])
# Load image and convert it to RGB
img = Image.open(img_path).convert('RGB')
# Apply transformations to the image
if self.transform:
img = self.transform(img)
return img
## Load the dataset
# Path to directory with all the images
img_folder = f'{dataset_folder}/img_align_celeba'
# Spatial size of training images, images are resized to this size.
image_size = 64
# Transformations to be applied to each individual image sample
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5])
])
# Load the dataset from file and apply transformations
celeba_dataset = CelebADataset(img_folder, transform)
## Create a dataloader
# Batch size during training
batch_size = 128
# Number of workers for the dataloader
num_workers = 0 if device.type == 'cuda' else 2
# Whether to put fetched data tensors to pinned memory
pin_memory = True if device.type == 'cuda' else False
celeba_dataloader = torch.utils.data.DataLoader(celeba_dataset,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_memory,
shuffle=True)
Run Code Online (Sandbox Code Playgroud)
此实现内存效率高,适用于我的用例,即使在训练期间使用的内存平均值约为(4GB)。然而,我希望能够进一步了解可能导致内存问题的原因。
| 归档时间: |
|
| 查看次数: |
13399 次 |
| 最近记录: |