8 python parallel-processing numpy progress-bar numba
我一直在尝试使用 numba 运行代码,并且还添加了打印来查看代码的进度:
from numba import jit,njit,prange
import numpy as np
# for minimum reproducible example
a=1e5
ar = np.random.rand(a)
at = np.random.rand(a)
an = np.random.rand(a)
###############################3
tau = 1 # time lag
window = 6000
@njit(parallel=True)
def func_DB(ar,at,an):
DBtotal= np.zeros((len(an)-tau))
k = 0
for i in prange(0,len(an)-tau,1):
DBtotal[i] = np.sqrt((ar[i + tau]- ar[i])**2 +(at[i + tau]- at[i])**2 +(an[i + tau]- an[i])**2)
## To print the progress
if i%1e5==0:
k+=1
print(k*1e5/len(DBtotal))
return DBtotal
@njit(parallel=True)
def func_PVI(tau, window):
PVI = np.zeros((len(DBtotal)))
k = 0
for i in prange(int(window/2),len(DBtotal)-int(window/2)):
PVI[i] = DBtotal[i]/np.sqrt((np.mean(DBtotal[i-int(window/2):i+int(window/2)]**2)))
# To print the progress
if i%1e5==0:
k+=1
print(k*1e5/len(DBtotal))
return PVI
DBtotal = func_DB(ar,at,an)
PVI = func_PVI(DBtotal,tau, window)
Run Code Online (Sandbox Code Playgroud)
然而,当代码运行时,我没有得到我所期望的结果(即随着代码的进展,值从 0 变为 1),相反,我得到以下结果:
Out[:] 0.009479390005044932
0.009479390005044932
0.009479390005044932
0.009479390005044932
0.009479390005044932
0.018958780010089864
Run Code Online (Sandbox Code Playgroud)
有人可以建议一种查看代码进度的方法吗?
此外,任何使代码更高效的建议将不胜感激!
我将函数分解成多个部分,并在其周围封装了一个 tqdm。
代替
@jit(nopython=True)
def dothings(A, rows, cols):
for r in range(rows):
for c in range(cols):
stuff...
dothings(data, data.shape[0], data.shape[1])
Run Code Online (Sandbox Code Playgroud)
我用了
rows=data.shape[0]
@jit(nopython=True)
def dothings(A, cols, r):
# for r in range(rows):
for c in range(cols):
stuff...
for r in tqdm.tqdm(range(rows), total=rows):
dothings(data, data.shape[1], r)
Run Code Online (Sandbox Code Playgroud)