enm*_*myj 6 window-functions apache-spark apache-spark-sql rolling-computation pyspark
我有一个大约有 100 亿行的数据集。我正在寻找最高效的方法来计算四个不同时间窗口(3 天、7 天、14 天、21 天)内的滚动/窗口聚合/指标(总和、平均值、最小值、最大值、stddev)。
Spark 版本:2.4.4
ec2 实例类型:r5.24xlarge
核心 ec2 实例数量:10
pyspark 分区数量:600
我读了一堆 SO 帖子,这些帖子要么解决了计算滚动统计的机制,要么解决了如何使窗口函数更快。然而,没有一篇文章以解决我的问题的方式结合这两个概念。我在下面显示了一些选项,它们可以完成我想要的操作,但我需要它们在我的真实数据集上运行得更快,因此我正在寻找更快/更好的建议。
我的数据集的结构如下,但约有 100 亿行:
+--------------------------+----+-----+
|date |name|value|
+--------------------------+----+-----+
|2020-12-20 17:45:19.536796|1 |5 |
|2020-12-21 17:45:19.53683 |1 |105 |
|2020-12-22 17:45:19.536846|1 |205 |
|2020-12-23 17:45:19.536861|1 |305 |
|2020-12-24 17:45:19.536875|1 |405 |
|2020-12-25 17:45:19.536891|1 |505 |
|2020-12-26 17:45:19.536906|1 |605 |
|2020-12-20 17:45:19.536796|2 |10 |
|2020-12-21 17:45:19.53683 |2 |110 |
|2020-12-22 17:45:19.536846|2 |210 |
|2020-12-23 17:45:19.536861|2 |310 |
|2020-12-24 17:45:19.536875|2 |410 |
|2020-12-25 17:45:19.536891|2 |510 |
|2020-12-26 17:45:19.536906|2 |610 |
|2020-12-20 17:45:19.536796|3 |15 |
|2020-12-21 17:45:19.53683 |3 |115 |
|2020-12-22 17:45:19.536846|3 |215 |
Run Code Online (Sandbox Code Playgroud)
我需要我的数据集如下所示。注意:显示了 7 天窗口的窗口统计信息,但我还需要其他三个窗口。
+--------------------------+----+-----+----+-----+---+---+------------------+
|date |name|value|sum |mean |min|max|stddev |
+--------------------------+----+-----+----+-----+---+---+------------------+
|2020-12-20 17:45:19.536796|1 |5 |5 |5.0 |5 |5 |NaN |
|2020-12-21 17:45:19.53683 |1 |105 |110 |55.0 |5 |105|70.71067811865476 |
|2020-12-22 17:45:19.536846|1 |205 |315 |105.0|5 |205|100.0 |
|2020-12-23 17:45:19.536861|1 |305 |620 |155.0|5 |305|129.09944487358058|
|2020-12-24 17:45:19.536875|1 |405 |1025|205.0|5 |405|158.11388300841898|
|2020-12-25 17:45:19.536891|1 |505 |1530|255.0|5 |505|187.08286933869707|
|2020-12-26 17:45:19.536906|1 |605 |2135|305.0|5 |605|216.02468994692867|
|2020-12-20 17:45:19.536796|2 |10 |10 |10.0 |10 |10 |NaN |
|2020-12-21 17:45:19.53683 |2 |110 |120 |60.0 |10 |110|70.71067811865476 |
|2020-12-22 17:45:19.536846|2 |210 |330 |110.0|10 |210|100.0 |
|2020-12-23 17:45:19.536861|2 |310 |640 |160.0|10 |310|129.09944487358058|
|2020-12-24 17:45:19.536875|2 |410 |1050|210.0|10 |410|158.11388300841898|
|2020-12-25 17:45:19.536891|2 |510 |1560|260.0|10 |510|187.08286933869707|
|2020-12-26 17:45:19.536906|2 |610 |2170|310.0|10 |610|216.02468994692867|
|2020-12-20 17:45:19.536796|3 |15 |15 |15.0 |15 |15 |NaN |
|2020-12-21 17:45:19.53683 |3 |115 |130 |65.0 |15 |115|70.71067811865476 |
|2020-12-22 17:45:19.536846|3 |215 |345 |115.0|15 |215|100.0 |
Run Code Online (Sandbox Code Playgroud)
为了便于阅读,我将在这些示例中只创建一个窗口。我尝试过的事情:
Window().over()语法+--------------------------+----+-----+
|date |name|value|
+--------------------------+----+-----+
|2020-12-20 17:45:19.536796|1 |5 |
|2020-12-21 17:45:19.53683 |1 |105 |
|2020-12-22 17:45:19.536846|1 |205 |
|2020-12-23 17:45:19.536861|1 |305 |
|2020-12-24 17:45:19.536875|1 |405 |
|2020-12-25 17:45:19.536891|1 |505 |
|2020-12-26 17:45:19.536906|1 |605 |
|2020-12-20 17:45:19.536796|2 |10 |
|2020-12-21 17:45:19.53683 |2 |110 |
|2020-12-22 17:45:19.536846|2 |210 |
|2020-12-23 17:45:19.536861|2 |310 |
|2020-12-24 17:45:19.536875|2 |410 |
|2020-12-25 17:45:19.536891|2 |510 |
|2020-12-26 17:45:19.536906|2 |610 |
|2020-12-20 17:45:19.536796|3 |15 |
|2020-12-21 17:45:19.53683 |3 |115 |
|2020-12-22 17:45:19.536846|3 |215 |
Run Code Online (Sandbox Code Playgroud)
这会创建多个窗口规格,如此处所示,因此是串行执行的,并且在大型数据集上运行速度非常慢
status_quo = (df
.withColumn("sum",F.sum(F.col("value")).over(window))
.withColumn("mean",F.avg(F.col("value")).over(window))
.withColumn("min",F.min(F.col("value")).over(window))
.withColumn("max",F.max(F.col("value")).over(window))
.withColumn("stddev",F.stddev(F.col("value")).over(window))
)
status_quo.show()
status_quo.explain()
Run Code Online (Sandbox Code Playgroud)
根据这个答案似乎创建了更少的窗口规格,但是aggregate()函数语法对我来说没有意义,我不知道如何stddev使用高阶函数编写,并且在小型测试中性能似乎并没有好多少
+--------------------------+----+-----+----+-----+---+---+------------------+
|date |name|value|sum |mean |min|max|stddev |
+--------------------------+----+-----+----+-----+---+---+------------------+
|2020-12-20 17:45:19.536796|1 |5 |5 |5.0 |5 |5 |NaN |
|2020-12-21 17:45:19.53683 |1 |105 |110 |55.0 |5 |105|70.71067811865476 |
|2020-12-22 17:45:19.536846|1 |205 |315 |105.0|5 |205|100.0 |
|2020-12-23 17:45:19.536861|1 |305 |620 |155.0|5 |305|129.09944487358058|
|2020-12-24 17:45:19.536875|1 |405 |1025|205.0|5 |405|158.11388300841898|
|2020-12-25 17:45:19.536891|1 |505 |1530|255.0|5 |505|187.08286933869707|
|2020-12-26 17:45:19.536906|1 |605 |2135|305.0|5 |605|216.02468994692867|
|2020-12-20 17:45:19.536796|2 |10 |10 |10.0 |10 |10 |NaN |
|2020-12-21 17:45:19.53683 |2 |110 |120 |60.0 |10 |110|70.71067811865476 |
|2020-12-22 17:45:19.536846|2 |210 |330 |110.0|10 |210|100.0 |
|2020-12-23 17:45:19.536861|2 |310 |640 |160.0|10 |310|129.09944487358058|
|2020-12-24 17:45:19.536875|2 |410 |1050|210.0|10 |410|158.11388300841898|
|2020-12-25 17:45:19.536891|2 |510 |1560|260.0|10 |510|187.08286933869707|
|2020-12-26 17:45:19.536906|2 |610 |2170|310.0|10 |610|216.02468994692867|
|2020-12-20 17:45:19.536796|3 |15 |15 |15.0 |15 |15 |NaN |
|2020-12-21 17:45:19.53683 |3 |115 |130 |65.0 |15 |115|70.71067811865476 |
|2020-12-22 17:45:19.536846|3 |215 |345 |115.0|15 |215|100.0 |
Run Code Online (Sandbox Code Playgroud)
这似乎是简单测试中最快的。唯一的(小)问题是我的代码库的其余部分使用 DataFrame API。在小型测试中似乎更快,但未在完整数据集上进行测试。
import datetime
from pyspark.sql import SparkSession
import pyspark.sql.functions as F
from pyspark.sql.window import Window
from pyspark.sql.types import FloatType
import pandas as pd
import numpy as np
spark = SparkSession.builder.appName('example').getOrCreate()
# create spark dataframe
n = 7
names = [1, 2, 3]
date_list = [datetime.datetime.today() - datetime.timedelta(days=(n-x)) for x in range(n)]
values = [x*100 for x in range(n)]
rows = []
for name in names:
for d, v in zip(date_list, values):
rows.append(
{
"name": name,
"date": d,
"value": v+(5*name)
}
)
df = spark.createDataFrame(data=rows)
# setup window
window_days = 7
window = (
Window
.partitionBy(F.col("name"))
.orderBy(F.col("date").cast("timestamp").cast("long"))
.rangeBetween(-window_days * 60 * 60 * 24 + 1, Window.currentRow)
)
Run Code Online (Sandbox Code Playgroud)
注意:我将暂时将此标记为已接受的答案。如果有人发现更快/更好,请通知我,我会更换它!
编辑澄清:此处显示的计算假设输入数据帧通过日级滚动计算预处理为日级
在我发布问题后,我在真实数据集上测试了几种不同的选项(并从同事那里得到了一些输入),我相信最快的方法(对于大型数据集)使用pyspark.sql.functions.window()withgroupby().agg而不是pyspark.sql.window.Window().
完成这项工作的步骤是:
name按和对数据帧进行排序date(在示例数据帧中).persist()数据框F.window()并连接回df每个所需的窗口。查看此操作的最佳/最简单方法是在 Spark GUI 中的 SQL 图上。当Window()使用 时,SQL 执行是完全顺序的。然而,当F.window()使用时,该图显示了并行化!注意:在小数据集上Window()似乎仍然更快。
在我对 7 天窗口的真实数据进行的测试中,Window()速度比F.window(). 唯一的缺点是F.window()使用起来不太方便。我在下面展示了一些代码和屏幕截图以供参考
F.window()与groupby.agg())# this turned out to be super important for tricking spark into parallelizing things
df = df.orderBy("name", "date")
df.persist()
fwindow7 = F.window(
F.col("date"),
windowDuration="7 days",
slideDuration="1 days",
).alias("window")
gb7 = (
df
.groupBy(F.col("name"), fwindow7)
.agg(
F.sum(F.col("value")).alias("sum7"),
F.avg(F.col("value")).alias("mean7"),
F.min(F.col("value")).alias("min7"),
F.max(F.col("value")).alias("max7"),
F.stddev(F.col("value")).alias("stddev7"),
F.count(F.col("value")).alias("cnt7")
)
.withColumn("date", F.date_sub(F.col("window.end").cast("date"), 1))
.drop("window")
)
window_function_example = df.join(gb7, ["name", "date"], how="left")
fwindow14 = F.window(
F.col("date"),
windowDuration="14 days",
slideDuration="1 days",
).alias("window")
gb14 = (
df
.groupBy(F.col("name"), fwindow14)
.agg(
F.sum(F.col("value")).alias("sum14"),
F.avg(F.col("value")).alias("mean14"),
F.min(F.col("value")).alias("min14"),
F.max(F.col("value")).alias("max14"),
F.stddev(F.col("value")).alias("stddev14"),
F.count(F.col("value")).alias("cnt14")
)
.withColumn("date", F.date_sub(F.col("window.end").cast("date"), 1))
.drop("window")
)
window_function_example = window_function_example.join(gb14, ["name", "date"], how="left")
window_function_example.orderBy("name", "date").show(truncate=True)
Run Code Online (Sandbox Code Playgroud)
SQL图
Window())window7 = (
Window
.partitionBy(F.col("name"))
.orderBy(F.col("date").cast("timestamp").cast("long"))
.rangeBetween(-7 * 60 * 60 * 24 + 1, Window.currentRow)
)
window14 = (
Window
.partitionBy(F.col("name"))
.orderBy(F.col("date").cast("timestamp").cast("long"))
.rangeBetween(-14 * 60 * 60 * 24 + 1, Window.currentRow)
)
hof_example = (
df
.withColumn("value_array", F.collect_list(F.col("value")).over(window7))
.withColumn("sum7", F.expr('AGGREGATE(value_array, DOUBLE(0), (acc, x) -> acc + x)'))
.withColumn("mean7", F.expr('AGGREGATE(value_array, DOUBLE(0), (acc, x) -> acc + x, acc -> acc / size(value_array))'))
.withColumn("max7", F.array_max(F.col("value_array")))
.withColumn("min7", F.array_min(F.col("value_array")))
.withColumn("std7", F.expr('AGGREGATE(value_array, DOUBLE(0), (acc, x) -> acc + (x - mean7)*(x - mean7), acc -> sqrt(acc / (size(value_array) - 1)))'))
.withColumn("count7", F.size(F.col("value_array")))
.drop("value_array")
)
hof_example = (
hof_example
.withColumn("value_array", F.collect_list(F.col("value")).over(window14))
.withColumn("sum14", F.expr('AGGREGATE(value_array, DOUBLE(0), (acc, x) -> acc + x)'))
.withColumn("mean14", F.expr('AGGREGATE(value_array, DOUBLE(0), (acc, x) -> acc + x, acc -> acc / size(value_array))'))
.withColumn("max14", F.array_max(F.col("value_array")))
.withColumn("min14", F.array_min(F.col("value_array")))
.withColumn("std14", F.expr('AGGREGATE(value_array, DOUBLE(0), (acc, x) -> acc + (x - mean14)*(x - mean14), acc -> sqrt(acc / (size(value_array) - 1)))'))
.withColumn("count14", F.size(F.col("value_array")))
.drop("value_array")
)
hof_example.show(truncate=True)
Run Code Online (Sandbox Code Playgroud)
SQL 图表片段
| 归档时间: |
|
| 查看次数: |
8717 次 |
| 最近记录: |