What is hp_metric in TensorBoard and how to get rid of it?

Gul*_*zar 5 python tensorflow tensorboard pytorch pytorch-lightning

I am new to Tensorboard.

I am using fairly simple code running an experiment, and this is the output:

在此处输入图片说明

I don't remember asking for a hp_metric graph, yet here it is.

What is it and how do I get rid of it?


Full code to reproduce, using Pytorch Lightning (not that I think anyone should have to reproduce this to answer):

Please notice the ONLY line dereferencing TensorBoard is

self.logger.experiment.add_scalars("losses", {"train_loss": loss}, global_step=self.current_epoch)
Run Code Online (Sandbox Code Playgroud)
import torch
from torch import nn
import torch.nn.functional as F
from typing import List, Optional
from pytorch_lightning.core.lightning import LightningModule
from Testing.Research.toy_datasets.ClustersDataset import ClustersDataset
from torch.utils.data import DataLoader
from Testing.Research.config.ConfigProvider import ConfigProvider
from pytorch_lightning import Trainer, seed_everything
from torch import optim
import os
from pytorch_lightning.loggers import TensorBoardLogger


class VAEFC(LightningModule):
    # see https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
    # for possible upgrades, see https://arxiv.org/pdf/1602.02282.pdf
    # https://stats.stackexchange.com/questions/332179/how-to-weight-kld-loss-vs-reconstruction-loss-in-variational-auto-encoder
    def __init__(self, encoder_layer_sizes: List, decoder_layer_sizes: List, config):
        super(VAEFC, self).__init__()
        self._config = config
        self.logger: Optional[TensorBoardLogger] = None

        assert len(encoder_layer_sizes) >= 3, "must have at least 3 layers (2 hidden)"
        # encoder layers
        self._encoder_layers = nn.ModuleList()
        for i in range(1, len(encoder_layer_sizes) - 1):
            enc_layer = nn.Linear(encoder_layer_sizes[i - 1], encoder_layer_sizes[i])
            self._encoder_layers.append(enc_layer)

        # predict mean and covariance vectors
        self._mean_layer = nn.Linear(encoder_layer_sizes[
                                         len(encoder_layer_sizes) - 2],
                                     encoder_layer_sizes[len(encoder_layer_sizes) - 1])
        self._logvar_layer = nn.Linear(encoder_layer_sizes[
                                           len(encoder_layer_sizes) - 2],
                                       encoder_layer_sizes[len(encoder_layer_sizes) - 1])

        # decoder layers
        self._decoder_layers = nn.ModuleList()
        for i in range(1, len(decoder_layer_sizes)):
            dec_layer = nn.Linear(decoder_layer_sizes[i - 1], decoder_layer_sizes[i])
            self._decoder_layers.append(dec_layer)

        self._recon_function = nn.MSELoss(reduction='mean')

    def _encode(self, x):
        for i in range(len(self._encoder_layers)):
            layer = self._encoder_layers[i]
            x = F.relu(layer(x))

        mean_output = self._mean_layer(x)
        logvar_output = self._logvar_layer(x)
        return mean_output, logvar_output

    def _reparametrize(self, mu, logvar):
        if not self.training:
            return mu
        std = logvar.mul(0.5).exp_()
        if std.is_cuda:
            eps = torch.cuda.FloatTensor(std.size()).normal_()
        else:
            eps = torch.FloatTensor(std.size()).normal_()
        reparameterized = eps.mul(std).add_(mu)
        return reparameterized

    def _decode(self, z):
        for i in range(len(self._decoder_layers) - 1):
            layer = self._decoder_layers[i]
            z = F.relu((layer(z)))

        decoded = self._decoder_layers[len(self._decoder_layers) - 1](z)
        # decoded = F.sigmoid(self._decoder_layers[len(self._decoder_layers)-1](z))
        return decoded

    def _loss_function(self, recon_x, x, mu, logvar, reconstruction_function):
        """
        recon_x: generating images
        x: origin images
        mu: latent mean
        logvar: latent log variance
        """
        binary_cross_entropy = reconstruction_function(recon_x, x)  # mse loss TODO see if mse or cross entropy
        # loss = 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
        kld_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
        kld = torch.sum(kld_element).mul_(-0.5)
        # KL divergence Kullback–Leibler divergence, regularization term for VAE
        # It is a measure of how different two probability distributions are different from each other.
        # We are trying to force the distributions closer while keeping the reconstruction loss low.
        # see https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

        # read on weighting the regularization term here:
        # https://stats.stackexchange.com/questions/332179/how-to-weight-kld-loss-vs-reconstruction-loss-in-variational
        # -auto-encoder
        return binary_cross_entropy + kld * self._config.regularization_factor

    def training_step(self, batch, batch_index):
        orig_batch, noisy_batch, _ = batch
        noisy_batch = noisy_batch.view(noisy_batch.size(0), -1)

        recon_batch, mu, logvar = self.forward(noisy_batch)

        loss = self._loss_function(
            recon_batch,
            orig_batch, mu, logvar,
            reconstruction_function=self._recon_function
        )
        # self.logger.experiment.add_scalars("losses", {"train_loss": loss})
        self.logger.experiment.add_scalars("losses", {"train_loss": loss}, global_step=self.current_epoch)
        # self.logger.experiment.add_scalar("train_loss", loss, self.current_epoch)
        self.logger.experiment.flush()
        return loss

    def train_dataloader(self):
        default_dataset, train_dataset, test_dataset = ClustersDataset.clusters_dataset_by_config()
        train_dataloader = DataLoader(train_dataset, batch_size=self._config.batch_size, shuffle=True)
        return train_dataloader

    def test_dataloader(self):
        default_dataset, train_dataset, test_dataset = ClustersDataset.clusters_dataset_by_config()
        test_dataloader = DataLoader(test_dataset, batch_size=self._config.batch_size, shuffle=True)
        return test_dataloader

    def configure_optimizers(self):
        optimizer = optim.Adam(model.parameters(), lr=self._config.learning_rate)
        return optimizer

    def forward(self, x):
        mu, logvar = self._encode(x)
        z = self._reparametrize(mu, logvar)
        decoded = self._decode(z)
        return decoded, mu, logvar


if __name__ == "__main__":
    config = ConfigProvider.get_config()
    seed_everything(config.random_seed)
    latent_dim = config.latent_dim
    enc_layer_sizes = config.enc_layer_sizes + [latent_dim]
    dec_layer_sizes = [latent_dim] + config.dec_layer_sizes
    model = VAEFC(config=config, encoder_layer_sizes=enc_layer_sizes, decoder_layer_sizes=dec_layer_sizes)

    logger = TensorBoardLogger(save_dir='tb_logs', name='VAEFC')
    logger.hparams = config  # TODO only put here relevant stuff
    # trainer = Trainer(gpus=1)
    trainer = Trainer(deterministic=config.is_deterministic,
                      #auto_lr_find=config.auto_lr_find,
                      #log_gpu_memory='all',
                      # min_epochs=99999,
                      max_epochs=config.num_epochs,
                      default_root_dir=os.getcwd(),
                      logger=logger
                      )
    # trainer.tune(model)
    trainer.fit(model)
    print("done training vae with lightning")
Run Code Online (Sandbox Code Playgroud)

ClustersDataset.py

from torch.utils.data import Dataset
import matplotlib.pyplot as plt
import torch
import numpy as np
from Testing.Research.config.ConfigProvider import ConfigProvider


class ClustersDataset(Dataset):
    __default_dataset = None
    __default_dataset_train = None
    __default_dataset_test = None

    def __init__(self, cluster_size: int, noise_factor: float = 0, transform=None, n_clusters=2, centers_radius=4.0):
        super(ClustersDataset, self).__init__()
        self._cluster_size = cluster_size
        self._noise_factor = noise_factor
        self._n_clusters = n_clusters
        self._centers_radius = centers_radius
        # self._transform = transform
        self._size = self._cluster_size * self._n_clusters

        self._create_data_clusters()
        self._combine_clusters_to_array()
        self._normalize_data()
        self._add_noise()

        # self._plot()
        pass

    @staticmethod
    def clusters_dataset_by_config():
        if ClustersDataset.__default_dataset is not None:
            return \
                ClustersDataset.__default_dataset, \
                ClustersDataset.__default_dataset_train, \
                ClustersDataset.__default_dataset_test
        config = ConfigProvider.get_config()
        default_dataset = ClustersDataset(
            cluster_size=config.cluster_size,
            noise_factor=config.noise_factor,
            transform=None,
            n_clusters=config.n_clusters,
            centers_radius=config.centers_radius
        )
        
        train_size = int(config.train_size * len(default_dataset))
        test_size = len(default_dataset) - train_size
        train_dataset, test_dataset = torch.utils.data.random_split(default_dataset, [train_size, test_size])

        ClustersDataset.__default_dataset = default_dataset
        ClustersDataset.__default_dataset_train = train_dataset
        ClustersDataset.__default_dataset_test = test_dataset

        return default_dataset, train_dataset, test_dataset

    def _create_data_clusters(self):
        self._clusters = [torch.zeros((self._cluster_size, 2)) for _ in range(self._n_clusters)]
        centers_radius = self._centers_radius
        for i, c in enumerate(self._clusters):
            r, x, y = 3.0, centers_radius * np.cos(i * np.pi * 2 / self._n_clusters), centers_radius * np.sin(
                i * np.pi * 2 / self._n_clusters)
            cluster_length = 1.1
            cluster_start = i * 2 * np.pi / self._n_clusters
            cluster_end = cluster_length * (i + 1) * 2 * np.pi / self._n_clusters
            cluster_inds = torch.linspace(start=cluster_start, end=cluster_end, steps=self._cluster_size,
                                          dtype=torch.float)
            c[:, 0] = r * torch.sin(cluster_inds) + y
            c[:, 1] = r * torch.cos(cluster_inds) + x

    def _plot(self):
        plt.figure()
        plt.scatter(self._noisy_values[:, 0], self._noisy_values[:, 1], s=1, color='b', label="noisy_values")
        plt.scatter(self._values[:, 0], self._values[:, 1], s=1, color='r', label="values")
        plt.legend(loc="upper left")
        plt.show()

    def _combine_clusters_to_array(self):
        size = self._size
        self._values = torch.zeros(size, 2)
        self._labels = torch.zeros(size, dtype=torch.long)
        for i, c in enumerate(self._clusters):
            self._values[i * self._cluster_size: (i + 1) * self._cluster_size, :] = self._clusters[i]
            self._labels[i * self._cluster_size: (i + 1) * self._cluster_size] = i

    def _add_noise(self):
        size = self._size

        mean = torch.zeros(size, 2)
        std = torch.ones(size, 2)
        noise = torch.normal(mean, std)
        self._noisy_values = torch.zeros(size, 2)
        self._noisy_values[:] = self._values
        self._noisy_values = self._noisy_values + noise * self._noise_factor

    def _normalize_data(self):
        values_min, values_max = torch.min(self._values), torch.max(self._values)
        self._values = (self._values - values_min) / (values_max - values_min)
        self._values = self._values * 2 - 1

    def __len__(self):
        return self._size  # number of samples in the dataset

    def __getitem__(self, index):
        item = self._values[index, :]
        noisy_item = self._noisy_values[index, :]
        # if self._transform is not None:
        #     noisy_item = self._transform(item)
        return item, noisy_item, self._labels[index]

    @property
    def values(self):
        return self._values

    @property
    def noisy_values(self):
        return self._noisy_values

Run Code Online (Sandbox Code Playgroud)

Config values (ConfigProvider just returns those as an object)

num_epochs: 15
batch_size: 128
learning_rate: 0.0001
auto_lr_find: False

noise_factor: 0.1
regularization_factor: 0.0

cluster_size: 5000
n_clusters: 5
centers_radius: 4.0
train_size: 0.8

latent_dim: 8

enc_layer_sizes: [2, 200, 200, 200]
dec_layer_sizes: [200, 200, 200, 2]

retrain_vae: False
random_seed: 11
is_deterministic: True
Run Code Online (Sandbox Code Playgroud)

joe*_*140 4

这是 pytorch Lightning 中 Tensorboard 的默认设置。您可以设置default_hp_metric为 false 以消除此指标。

TensorBoardLogger(save_dir='tb_logs', name='VAEFC', default_hp_metric=False)
Run Code Online (Sandbox Code Playgroud)

hp_metric可以帮助您跟踪不同超参数下的模型性能。hparams您可以在您的tensorboard中检查它。

  • 你所说的“帮助你”是什么意思?我所能看到的只是一个只有一个点的图表。 (9认同)
  • 如果我们不显式创建记录器,而是使用来自子类化“pl.LightningModule”的默认“self.logger”怎么办?另外,这是应该做什么?我所有的跑步都只是-1。 (2认同)
  • >“帮助你”是什么意思?您可以按照 https://pytorch-lightning.readthedocs.io/en/latest/extensions/logging.html?highlight=hp_metric#logging-hyperparameters 中的记录设置要记录的指标 然后,您可以查看超参数并查看哪些根据您选择的指标得出最佳结果。 (2认同)