Bem*_*lak 26 python nlp nltk deep-learning sentence-similarity
我正在制作一个这样的项目: https://www.youtube.com/watch?v =dovB8uSUUXE&feature=youtu.be 但我遇到了麻烦,因为我需要检查句子之间的相似性,例如:如果用户说:“那个人穿红色T恤”而不是“那个男孩穿红色T恤” 我想要一种方法来检查这两个句子之间的相似度,而不必检查每个单词之间的相似度有没有办法做到这一点在Python中?
我正在尝试找到一种方法来检查两个句子之间的相似性。
B20*_*011 71
下面的大多数库应该是语义相似性比较的不错选择。您可以通过使用这些库中的预训练模型生成单词或句子向量来跳过直接单词比较。
Spacy必须首先加载所需的模型。
供使用时下载en_core_web_md使用python -m spacy download en_core_web_md。为使用en_core_web_lg而用python -m spacy download en_core_web_lg。
大型号的写入速度约为 830mb,并且速度相当慢,因此中型号可能是一个不错的选择。
https://spacy.io/usage/vectors-similarity/
代码:
import spacy
nlp = spacy.load("en_core_web_lg")
#nlp = spacy.load("en_core_web_md")
doc1 = nlp(u'the person wear red T-shirt')
doc2 = nlp(u'this person is walking')
doc3 = nlp(u'the boy wear red T-shirt')
print(doc1.similarity(doc2))
print(doc1.similarity(doc3))
print(doc2.similarity(doc3))
Run Code Online (Sandbox Code Playgroud)
输出:
0.7003971105290047
0.9671912343259517
0.6121211244876517
Run Code Online (Sandbox Code Playgroud)
Sentence Transformershttps://github.com/UKPLab/sentence-transformers
https://www.sbert.net/docs/usage/semantic_textual_similarity.html
安装与pip install -U sentence-transformers. 这会生成句子嵌入。
代码:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('distilbert-base-nli-mean-tokens')
sentences = [
'the person wear red T-shirt',
'this person is walking',
'the boy wear red T-shirt'
]
sentence_embeddings = model.encode(sentences)
for sentence, embedding in zip(sentences, sentence_embeddings):
print("Sentence:", sentence)
print("Embedding:", embedding)
print("")
Run Code Online (Sandbox Code Playgroud)
输出:
Sentence: the person wear red T-shirt
Embedding: [ 1.31643847e-01 -4.20616418e-01 ... 8.13076794e-01 -4.64620918e-01]
Sentence: this person is walking
Embedding: [-3.52878094e-01 -5.04286848e-02 ... -2.36091137e-01 -6.77282438e-02]
Sentence: the boy wear red T-shirt
Embedding: [-2.36365378e-01 -8.49713564e-01 ... 1.06414437e+00 -2.70157874e-01]
Run Code Online (Sandbox Code Playgroud)
现在嵌入向量可用于计算各种相似性度量。
代码:
from sentence_transformers import SentenceTransformer, util
print(util.pytorch_cos_sim(sentence_embeddings[0], sentence_embeddings[1]))
print(util.pytorch_cos_sim(sentence_embeddings[0], sentence_embeddings[2]))
print(util.pytorch_cos_sim(sentence_embeddings[1], sentence_embeddings[2]))
Run Code Online (Sandbox Code Playgroud)
输出:
tensor([[0.4644]])
tensor([[0.9070]])
tensor([[0.3276]])
Run Code Online (Sandbox Code Playgroud)
scipy与和相同pytorch,
代码:
from scipy.spatial import distance
print(1 - distance.cosine(sentence_embeddings[0], sentence_embeddings[1]))
print(1 - distance.cosine(sentence_embeddings[0], sentence_embeddings[2]))
print(1 - distance.cosine(sentence_embeddings[1], sentence_embeddings[2]))
Run Code Online (Sandbox Code Playgroud)
输出:
0.4643629193305969
0.9069876074790955
0.3275738060474396
Run Code Online (Sandbox Code Playgroud)
代码:
import torch.nn
cos = torch.nn.CosineSimilarity(dim=0, eps=1e-6)
b = torch.from_numpy(sentence_embeddings)
print(cos(b[0], b[1]))
print(cos(b[0], b[2]))
print(cos(b[1], b[2]))
Run Code Online (Sandbox Code Playgroud)
输出:
tensor(0.4644)
tensor(0.9070)
tensor(0.3276)
Run Code Online (Sandbox Code Playgroud)
TFHub Universal Sentence Encoderhttps://tfhub.dev/google/universal-sentence-encoder/4
这个模型非常大,大约 1GB,而且看起来比其他模型慢。这也会生成句子的嵌入。
代码:
import tensorflow_hub as hub
embed = hub.load("https://tfhub.dev/google/universal-sentence-encoder/4")
embeddings = embed([
"the person wear red T-shirt",
"this person is walking",
"the boy wear red T-shirt"
])
print(embeddings)
Run Code Online (Sandbox Code Playgroud)
输出:
tf.Tensor(
[[ 0.063188 0.07063895 -0.05998802 ... -0.01409875 0.01863449
0.01505797]
[-0.06786212 0.01993554 0.03236153 ... 0.05772103 0.01787272
0.01740014]
[ 0.05379306 0.07613157 -0.05256693 ... -0.01256405 0.0213196
-0.00262441]], shape=(3, 512), dtype=float32)
Run Code Online (Sandbox Code Playgroud)
代码:
from scipy.spatial import distance
print(1 - distance.cosine(embeddings[0], embeddings[1]))
print(1 - distance.cosine(embeddings[0], embeddings[2]))
print(1 - distance.cosine(embeddings[1], embeddings[2]))
Run Code Online (Sandbox Code Playgroud)
输出:
0.15320375561714172
0.8592830896377563
0.09080004692077637
Run Code Online (Sandbox Code Playgroud)
https://github.com/facebookresearch/InferSent
https://github.com/Tiiiger/bert_score
该图显示了该方法,
https://en.wikipedia.org/wiki/Cosine_similarity#Angular_distance_and_similarity
https://towardsdatascience.com/word-distance- Between-word-embeddings-cc3e9cf1d632
https://docs.scipy.org/doc/scipy-0.14.0/reference/ generated/scipy.spatial.distance.cosine.html
https://www.tensorflow.org/api_docs/python/tf/keras/losses/CosineSimilarity
https://nlp.town/blog/sentence-similarity/