Pet*_*ter 54 python interpolation numpy nan
是否有一种快速的方法用(例如)线性插值替换numpy数组中的所有NaN值?
例如,
[1 1 1 nan nan 2 2 nan 0]
Run Code Online (Sandbox Code Playgroud)
将被转换成
[1 1 1 1.3 1.6 2 2 1 0]
Run Code Online (Sandbox Code Playgroud)
eat*_*eat 90
让我们首先定义一个简单的辅助函数,以便更简单地处理NaN的索引和逻辑索引:
import numpy as np
def nan_helper(y):
"""Helper to handle indices and logical indices of NaNs.
Input:
- y, 1d numpy array with possible NaNs
Output:
- nans, logical indices of NaNs
- index, a function, with signature indices= index(logical_indices),
to convert logical indices of NaNs to 'equivalent' indices
Example:
>>> # linear interpolation of NaNs
>>> nans, x= nan_helper(y)
>>> y[nans]= np.interp(x(nans), x(~nans), y[~nans])
"""
return np.isnan(y), lambda z: z.nonzero()[0]
Run Code Online (Sandbox Code Playgroud)
现在nan_helper(.)
可以使用如下:
>>> y= array([1, 1, 1, NaN, NaN, 2, 2, NaN, 0])
>>>
>>> nans, x= nan_helper(y)
>>> y[nans]= np.interp(x(nans), x(~nans), y[~nans])
>>>
>>> print y.round(2)
[ 1. 1. 1. 1.33 1.67 2. 2. 1. 0. ]
Run Code Online (Sandbox Code Playgroud)
---
虽然指定一个单独的函数来做这样的事情似乎有点过分了:
>>> nans, x= np.isnan(y), lambda z: z.nonzero()[0]
Run Code Online (Sandbox Code Playgroud)
它最终会带来红利.
因此,无论何时使用NaNs相关数据,只需在一些特定的辅助函数下封装所需的所有(新的NaN相关)功能.您的代码库将更加连贯和可读,因为它遵循易于理解的习语.
实际上,插值是观察NaN处理是如何完成的一个很好的上下文,但是在各种其他环境中也使用了类似的技术.
Pet*_*ter 22
我想出了这段代码:
import numpy as np
nan = np.nan
A = np.array([1, nan, nan, 2, 2, nan, 0])
ok = -np.isnan(A)
xp = ok.ravel().nonzero()[0]
fp = A[-np.isnan(A)]
x = np.isnan(A).ravel().nonzero()[0]
A[np.isnan(A)] = np.interp(x, xp, fp)
print A
Run Code Online (Sandbox Code Playgroud)
它打印
[ 1. 1.33333333 1.66666667 2. 2. 1. 0. ]
Run Code Online (Sandbox Code Playgroud)
小智 9
只需使用numpy逻辑和where where语句来应用1D插值.
import numpy as np
from scipy import interpolate
def fill_nan(A):
'''
interpolate to fill nan values
'''
inds = np.arange(A.shape[0])
good = np.where(np.isfinite(A))
f = interpolate.interp1d(inds[good], A[good],bounds_error=False)
B = np.where(np.isfinite(A),A,f(inds))
return B
Run Code Online (Sandbox Code Playgroud)
对于二维数据,SciPygriddata
对我来说效果很好:
>>> import numpy as np
>>> from scipy.interpolate import griddata
>>>
>>> # SETUP
>>> a = np.arange(25).reshape((5, 5)).astype(float)
>>> a
array([[ 0., 1., 2., 3., 4.],
[ 5., 6., 7., 8., 9.],
[ 10., 11., 12., 13., 14.],
[ 15., 16., 17., 18., 19.],
[ 20., 21., 22., 23., 24.]])
>>> a[np.random.randint(2, size=(5, 5)).astype(bool)] = np.NaN
>>> a
array([[ nan, nan, nan, 3., 4.],
[ nan, 6., 7., nan, nan],
[ 10., nan, nan, 13., nan],
[ 15., 16., 17., nan, 19.],
[ nan, nan, 22., 23., nan]])
>>>
>>> # THE INTERPOLATION
>>> x, y = np.indices(a.shape)
>>> interp = np.array(a)
>>> interp[np.isnan(interp)] = griddata(
... (x[~np.isnan(a)], y[~np.isnan(a)]), # points we know
... a[~np.isnan(a)], # values we know
... (x[np.isnan(a)], y[np.isnan(a)])) # points to interpolate
>>> interp
array([[ nan, nan, nan, 3., 4.],
[ nan, 6., 7., 8., 9.],
[ 10., 11., 12., 13., 14.],
[ 15., 16., 17., 18., 19.],
[ nan, nan, 22., 23., nan]])
Run Code Online (Sandbox Code Playgroud)
我在 3D 图像上使用它,在 2D 切片(350x350 的 4000 个切片)上运行。整个操作仍然需要大约一个小时:/
首先可能更容易更改数据的生成方式,但如果不是:
bad_indexes = np.isnan(data)
Run Code Online (Sandbox Code Playgroud)
创建一个布尔数组,指示nans的位置
good_indexes = np.logical_not(bad_indexes)
Run Code Online (Sandbox Code Playgroud)
创建一个布尔数组,指示好值区域的位置
good_data = data[good_indexes]
Run Code Online (Sandbox Code Playgroud)
原始数据的限制版本,不包括nans
interpolated = np.interp(bad_indexes.nonzero(), good_indexes.nonzero(), good_data)
Run Code Online (Sandbox Code Playgroud)
通过插值运行所有坏索引
data[bad_indexes] = interpolated
Run Code Online (Sandbox Code Playgroud)
用插值替换原始数据.
或者以温斯顿的回答为基础
def pad(data):
bad_indexes = np.isnan(data)
good_indexes = np.logical_not(bad_indexes)
good_data = data[good_indexes]
interpolated = np.interp(bad_indexes.nonzero()[0], good_indexes.nonzero()[0], good_data)
data[bad_indexes] = interpolated
return data
A = np.array([[1, 20, 300],
[nan, nan, nan],
[3, 40, 500]])
A = np.apply_along_axis(pad, 0, A)
print A
Run Code Online (Sandbox Code Playgroud)
结果
[[ 1. 20. 300.]
[ 2. 30. 400.]
[ 3. 40. 500.]]
Run Code Online (Sandbox Code Playgroud)
我需要一种在数据的开头和结尾处填充 NaN 的方法,但主要答案似乎没有这样做。
我想出的函数使用线性回归来填充 NaN。这解决了我的问题:
import numpy as np
def linearly_interpolate_nans(y):
# Fit a linear regression to the non-nan y values
# Create X matrix for linreg with an intercept and an index
X = np.vstack((np.ones(len(y)), np.arange(len(y))))
# Get the non-NaN values of X and y
X_fit = X[:, ~np.isnan(y)]
y_fit = y[~np.isnan(y)].reshape(-1, 1)
# Estimate the coefficients of the linear regression
beta = np.linalg.lstsq(X_fit.T, y_fit)[0]
# Fill in all the nan values using the predicted coefficients
y.flat[np.isnan(y)] = np.dot(X[:, np.isnan(y)].T, beta)
return y
Run Code Online (Sandbox Code Playgroud)
这是一个示例用例:
# Make an array according to some linear function
y = np.arange(12) * 1.5 + 10.
# First and last value are NaN
y[0] = np.nan
y[-1] = np.nan
# 30% of other values are NaN
for i in range(len(y)):
if np.random.rand() > 0.7:
y[i] = np.nan
# NaN's are filled in!
print (y)
print (linearly_interpolate_nans(y))
Run Code Online (Sandbox Code Playgroud)
我使用插值来替换所有 NaN 值。
A = np.array([1, nan, nan, 2, 2, nan, 0])
np.interp(np.arange(len(A)),
np.arange(len(A))[np.isnan(A) == False],
A[np.isnan(A) == False])
Run Code Online (Sandbox Code Playgroud)
输出 :
array([1. , 1.33333333, 1.66666667, 2. , 2. , 1. , 0. ])
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
34886 次 |
最近记录: |