ValueError:您必须指定decoder_input_ids或decoder_inputs_embeds

wav*_*per 5 python deep-learning torchscript huggingface-transformers

尝试将 t5 模型转换question-generationtorchscript model,同时执行此操作时遇到此错误

ValueError:您必须指定decoder_input_ids或decoder_inputs_embeds

这是我在 colab 上运行的代码。

!pip install -U transformers==3.0.0
!python -m nltk.downloader punkt

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

model = AutoModelForSeq2SeqLM.from_pretrained('valhalla/t5-base-qg-hl')

t_input =  'Python is a programming language. It is developed by <hl> Guido Van Rossum <hl>. </s>'

tokenizer = AutoTokenizer.from_pretrained('valhalla/t5-base-qg-hl', return_tensors = 'pt')

def _tokenize(
    inputs,
    padding=True,
    truncation=True,
    add_special_tokens=True,
    max_length=64
):
    inputs = tokenizer.batch_encode_plus(
        inputs, 
        max_length=max_length,
        add_special_tokens=add_special_tokens,
        truncation=truncation,
        padding="max_length" if padding else False,
        pad_to_max_length=padding,
        return_tensors="pt"
    )
    return inputs

token = _tokenize(t_input, padding=True, truncation=True)


traced_model = torch.jit.trace(model, [token['input_ids'], token['attention_mask']] )
torch.jit.save(traced_model, "traced_t5.pt")
Run Code Online (Sandbox Code Playgroud)

出现这个错误

!pip install -U transformers==3.0.0
!python -m nltk.downloader punkt

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch

model = AutoModelForSeq2SeqLM.from_pretrained('valhalla/t5-base-qg-hl')

t_input =  'Python is a programming language. It is developed by <hl> Guido Van Rossum <hl>. </s>'

tokenizer = AutoTokenizer.from_pretrained('valhalla/t5-base-qg-hl', return_tensors = 'pt')

def _tokenize(
    inputs,
    padding=True,
    truncation=True,
    add_special_tokens=True,
    max_length=64
):
    inputs = tokenizer.batch_encode_plus(
        inputs, 
        max_length=max_length,
        add_special_tokens=add_special_tokens,
        truncation=truncation,
        padding="max_length" if padding else False,
        pad_to_max_length=padding,
        return_tensors="pt"
    )
    return inputs

token = _tokenize(t_input, padding=True, truncation=True)


traced_model = torch.jit.trace(model, [token['input_ids'], token['attention_mask']] )
torch.jit.save(traced_model, "traced_t5.pt")
Run Code Online (Sandbox Code Playgroud)

如何解决这个问题?或者是否有更好的方法将 t5 模型转换为torchscript.

谢谢。

wav*_*per 3

更新:请参阅答案,如果您要导出t5onnxfastT5,可以使用该库轻松完成。

我弄清楚是什么导致了这个问题。由于上述模型是顺序的,因此它同时具有编码器和解码器。我们需要将特征传递到编码器,将标签(目标)传递到解码器。

traced_model = torch.jit.trace(model, 
                               (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                               )
torch.jit.save(traced_model, "qg_model.pt")
Run Code Online (Sandbox Code Playgroud)

decoder_input_ids问题的标记化 ID(这里的问题是一个标签)。

即使torchscript创建了模型,它也没有generate()huggingface't5那样的方法。