有没有更快的方法来解析这个文本文件?

Jas*_*unn 5 python optimization file

我正在从一些类似于以下内容的文本文件中解析日期/时间/测量信息:

[Sun Jul 15 09:05:56.724 2018] *000129.32347
[Sun Jul 15 09:05:57.722 2018] *000129.32352
[Sun Jul 15 09:05:58.721 2018] *000129.32342
[Sun Jul 15 09:05:59.719 2018] *000129.32338
[Sun Jul 15 09:06:00.733 2018] *000129.32338
[Sun Jul 15 09:06:01.732 2018] *000129.32352
Run Code Online (Sandbox Code Playgroud)

结果进入输出文件,如下所示:

07-15-2018 09:05:56.724, 29.32347
07-15-2018 09:05:57.722, 29.32352
07-15-2018 09:05:58.721, 29.32342
07-15-2018 09:05:59.719, 29.32338
07-15-2018 09:06:00.733, 29.32338
07-15-2018 09:06:01.732, 29.32352
Run Code Online (Sandbox Code Playgroud)

我正在使用的代码如下所示:

import os
import datetime

with open('dq_barorun_20180715_calibtest.log', 'r') as fh, open('output.txt' , 'w') as fh2:
    for line in fh:
        line = line.split()
        monthalpha = line[1]
        month = datetime.datetime.strptime(monthalpha, '%b').strftime('%m')
        day = line[2]
        time = line[3]
        yearbracket = line[4]
        year = yearbracket[0:4]
        pressfull = line[5]
        press = pressfull[5:13]
        timestamp = month+"-"+day+"-"+year+" "+time
        fh2.write(timestamp + ", " + press + "\n")
Run Code Online (Sandbox Code Playgroud)

这段代码工作正常并完成了我的需要,但我正在尝试学习在 Python 中解析文件的更有效的方法。处理一个 100MB 的文件大约需要 30 秒,而且我有几个大小为 1-2GB 的文件。有没有更快的方法解析这个文件?

Olv*_*ght 3

您可以声明monthsdict 不使用datetime模块,这应该会快一点。

months = {"Jan": "01", "Feb": "02", "Mar": "03", "Apr": "04", "May": "05", "Jun": "06",
          "Jul": "07", "Aug": "08", "Sep": "09", "Oct": "10", "Nov": "11", "Dec": "12"}
Run Code Online (Sandbox Code Playgroud)

您还可以使用解包并使代码更加简单:

for line in fh:
    _, month, day, time, year, last = line.split()
    res = months[month] + "-" + day + "-" + year[:4] + " " + time + ", " + last[5:]
    fh2.write(res)
Run Code Online (Sandbox Code Playgroud)

PStimeit显示速度快了大约10倍