Van*_*nel 10 python numpy euclidean-distance
我正在尝试自己完成斯坦福 CS231n 2017 CNN 课程的作业。
我正在尝试仅使用矩阵乘法和 Numpy 的求和广播来计算 L2 距离。L2距离为:
我想如果我使用这个公式我可以做到:
以下代码显示了计算 L2 距离的三种方法。如果我将 method 的输出compute_distances_two_loops与 method 的输出进行比较compute_distances_one_loop,两者相等。但我将该方法的输出compute_distances_two_loops与该方法的输出进行比较compute_distances_no_loops,其中我仅使用矩阵乘法和求和广播实现了 L2 距离,它们是不同的。
def compute_distances_two_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data.
Inputs:
- X: A numpy array of shape (num_test, D) containing test data.
Returns:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
is the Euclidean distance between the ith test point and the jth training
point.
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
for j in xrange(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j]. You should #
# not use a loop over dimension. #
#####################################################################
#dists[i, j] = np.sqrt(np.sum((X[i, :] - self.X_train[j, :]) ** 2))
dists[i, j] = np.sqrt(np.sum(np.square(X[i, :] - self.X_train[j, :])))
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists
def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in xrange(num_test):
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
dists[i, :] = np.sqrt(np.sum(np.square(self.X_train - X[i, :]), axis = 1))
#######################################################################
# END OF YOUR CODE #
#######################################################################
print(dists.shape)
return dists
def compute_distances_no_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using no explicit loops.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
#########################################################################
# TODO: #
# Compute the l2 distance between all test points and all training #
# points without using any explicit loops, and store the result in #
# dists. #
# #
# You should implement this function using only basic array operations; #
# in particular you should not use functions from scipy. #
# #
# HINT: Try to formulate the l2 distance using matrix multiplication #
# and two broadcast sums. #
#########################################################################
dists = np.sqrt(-2 * np.dot(X, self.X_train.T) +
np.sum(np.square(self.X_train), axis=1) +
np.sum(np.square(X), axis=1)[:, np.newaxis])
print(dists.shape)
#########################################################################
# END OF YOUR CODE #
#########################################################################
return dists
Run Code Online (Sandbox Code Playgroud)
您可以在这里找到完整的工作可测试代码。
你知道我在compute_distances_no_loops哪里做错了什么吗?
更新:
抛出错误消息的代码是:
dists_two = classifier.compute_distances_no_loops(X_test)
# check that the distance matrix agrees with the one we computed before:
difference = np.linalg.norm(dists - dists_two, ord='fro')
print('Difference was: %f' % (difference, ))
if difference < 0.001:
print('Good! The distance matrices are the same')
else:
print('Uh-oh! The distance matrices are different')
Run Code Online (Sandbox Code Playgroud)
以及错误消息:
Difference was: 372100.327569
Uh-oh! The distance matrices are different
Run Code Online (Sandbox Code Playgroud)
Vik*_*ova 12
以下是如何在不创建任何 3 维矩阵的情况下计算 X 行和 Y 行之间的成对距离:
def dist(X, Y):
sx = np.sum(X**2, axis=1, keepdims=True)
sy = np.sum(Y**2, axis=1, keepdims=True)
return np.sqrt(-2 * X.dot(Y.T) + sx + sy.T)
Run Code Online (Sandbox Code Playgroud)