Python 深度复制使用的内存超出了需要

Zil*_*ael 5 python memory deep-copy python-2.7 python-3.x

最近我在使用时遇到了奇怪的内存使用情况copy.deepcopy

我有以下代码示例:

import copy
import gc
import os

import psutil
from pympler.asizeof import asizeof
from humanize import filesize


class Foo(object):
    __slots__ = ["name", "foos", "bars"]

    def __init__(self, name):
        self.name = name
        self.foos = {}
        self.bars = {}

    def add_foo(self, foo):
        self.foos[foo.name] = foo

    def add_bar(self, bar):
        self.bars[bar.name] = bar

    def __getstate__(self):
        return {k: getattr(self, k) for k in self.__slots__}

    def __setstate__(self, state):
        for k, v in state.items():
            setattr(self, k, v)


class Bar(object):
    __slots__ = ["name", "description"]

    def __init__(self, name, description):
        self.name = name
        self.description = description

    def __getstate__(self):
        return {k: getattr(self, k) for k in self.__slots__}

    def __setstate__(self, state):
        for k, v in state.items():
            setattr(self, k, v)

def get_ram():
    return psutil.Process(os.getpid()).memory_info()[0]

def get_foo():
    sub_foo = Foo("SubFoo1")
    for i in range(5000):
        sub_foo.add_bar(Bar("BarInSubFoo{}".format(i), "BarInSubFoo{}".format(i)))
    foo = Foo("Foo")
    foo.add_foo(sub_foo)
    for i in range(5000):
        foo.add_bar(Bar("BarInFoo{}".format(i), "BarInFoo{}".format(i)))

    return foo

def main():
    foo = get_foo()
    foo_size = asizeof(foo)

    gc.collect()
    ram1 = get_ram()

    foo_copy = copy.deepcopy(foo)

    gc.collect()
    ram2 = get_ram()
    foo_copy_size = asizeof(foo_copy)
    print("Original object size: {}, Ram before: {}\nCopied object size: {}, Ram after: {}\nDiff in ram: {}".format(
        filesize.naturalsize(foo_size), filesize.naturalsize(ram1), filesize.naturalsize(foo_copy_size),
        filesize.naturalsize(ram2), filesize.naturalsize(ram2-ram1)
    ))

if __name__ == "__main__":
    main()
Run Code Online (Sandbox Code Playgroud)

我试图做的是测试程序在copy.deepcopy. 为此,我创建了两个类。我预计在调用深度复制后我的内存使用量会增加,其数量等于原始对象的大小。奇怪的是我得到了这些结果:

Original object size: 2.1 MB, Ram before: 18.6 MB
Copied object size: 2.1 MB, Ram after: 24.7 MB
Diff in ram: 6.1 MB
Run Code Online (Sandbox Code Playgroud)

正如您所看到的,内存使用量的差异约为。复制对象大小的 300%。

** 这些结果是在 Windows 10 64 位上使用 Python 3.8.5 获得的

我尝试了什么?

  • 使用Python2.7运行这个代码示例,结果更奇怪(超过复制对象大小的500%):
Original object size: 2.3 MB, Ram before: 34.3 MB
Copied object size: 2.3 MB, Ram after: 46.2 MB
Diff in ram: 11.9 MB
Run Code Online (Sandbox Code Playgroud)
  • 使用 Python3.8 和 Python2.7 在 Linux 上运行(分别)得到相同的结果。
  • 返回元组列表而不是字典__getstate__得到了更好的结果,但与我的预期相去甚远
  • 在对象中使用列表而不是字典Foo也得到了更好的结果,但与我的预期相去甚远。
  • 使用pickle.dumps&pickle.loads来复制对象会产生相同的结果。

有什么困难吗?

jua*_*aga 5

其中一些可能是因为deepcopy保留了它访问过的所有对象的缓存以避免陷入无限循环(我set很确定)。对于这种事情,您可能应该编写自己的高效复制函数。deepcopy被编写为能够处理任意输入,但不一定是高效的。

如果你想要一个高效的复制功能,你可以自己编写。这对于深层复制来说已经足够了,其效果是:

import copy
import gc
import os

import psutil
from pympler.asizeof import asizeof
from humanize import filesize


class Foo(object):
    __slots__ = ["name", "foos", "bars"]

    def __init__(self, name):
        self.name = name
        self.foos = {}
        self.bars = {}

    def add_foo(self, foo):
        self.foos[foo.name] = foo

    def add_bar(self, bar):
        self.bars[bar.name] = bar

    def copy(self):
        new = Foo(self.name)
        new.foos = {k:foo.copy() for k, foo in self.foos.items()}
        new.bars = {k:bar.copy() for k, bar in self.bars.items()}
        return new

class Bar(object):
    __slots__ = ["name", "description"]

    def __init__(self, name, description):
        self.name = name
        self.description = description

    def copy(self):
        return Bar(self.name, self.description)

def get_ram():
    return psutil.Process(os.getpid()).memory_info()[0]

def get_foo():
    sub_foo = Foo("SubFoo1")
    for i in range(5000):
        sub_foo.add_bar(Bar("BarInSubFoo{}".format(i), "BarInSubFoo{}".format(i)))
    foo = Foo("Foo")
    foo.add_foo(sub_foo)
    for i in range(5000):
        foo.add_bar(Bar("BarInFoo{}".format(i), "BarInFoo{}".format(i)))

    return foo

def main():
    foo = get_foo()
    foo_size = asizeof(foo)

    gc.collect()
    ram1 = get_ram()

    foo_copy = foo.copy()

    gc.collect()
    ram2 = get_ram()
    foo_copy_size = asizeof(foo_copy)
    print("Original object size: {}, Ram before: {}\nCopied object size: {}, Ram after: {}\nDiff in ram: {}".format(
        filesize.naturalsize(foo_size), filesize.naturalsize(ram1), filesize.naturalsize(foo_copy_size),
        filesize.naturalsize(ram2), filesize.naturalsize(ram2-ram1)
    ))

if __name__ == "__main__":
    main()
Run Code Online (Sandbox Code Playgroud)