kso*_*all 4 python dataframe pandas
我有这个数据框,我需要根据framecol旋转或重塑
df = {'frame': {0: 0, 1: 1, 2: 2, 3: 0, 4: 1, 5: 2}, 'pvol': {0: nan, 1: nan, 2: nan, 3: 23.1, 4: 24.3, 5: 25.6}, 'vvol': {0: 109.8, 1: 140.5, 2: 160.4, 3: nan, 4: nan, 5: nan}, 'area': {0: 120, 1: 130, 2: 140, 3: 110, 4: 110, 5: 112}, 'label': {0: 'v', 1: 'v', 2: 'v', 3: 'p', 4: 'p', 5: 'p'}}
当前数据框
frame pvol vvol area label
0 NaN 109.8 120 v
1 NaN 140.5 130 v
2 NaN 160.4 140 v
0 23.1 NaN 110 p
1 24.3 NaN 110 p
2 25.6 NaN 112 p
Run Code Online (Sandbox Code Playgroud)
预期输出
frame pvol vvol v_area p_area
0 23.1 109.8 110 110
1 24.3 140.5 110 110
2 25.6 160.4 112 112
Run Code Online (Sandbox Code Playgroud)
前缀v和p不是必需的我只需要一种方法来区分列
这就是我让它工作的方式,但似乎很长。我确定有更好的方法
for name, tdf in df.groupby('label'):
df.loc[tdf.index, '{}_area'.format(name)] = tdf['area']
pdf = df[df['label'].eq('p')][['frame', 'label', 'pvol', 'p_area']]
vdf = df[df['label'].eq('v')][['frame', 'vvol', 'v_area']]
df = pdf.merge(vdf, on='frame', how='outer')
Run Code Online (Sandbox Code Playgroud)
让我们尝试 pivot 和dropna:
out = df.pivot(index='frame', columns='label').dropna(axis=1)
out.columns = [f'{y}_{x}' for x,y in out.columns]
Run Code Online (Sandbox Code Playgroud)
输出:
p_pvol v_vvol p_area v_area
frame
0 23.1 109.8 110 120
1 24.3 140.5 110 130
2 25.6 160.4 112 140
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
72 次 |
| 最近记录: |