sta*_*010 6 python pytorch dataloader
我正在研究 NLP 问题并使用 PyTorch。由于某种原因,我的数据加载器返回格式错误的批次。我的输入数据包含句子和整数标签。这些句子可以是句子列表或标记列表列表。稍后我将在下游组件中将标记转换为整数。
list_labels = [ 0, 1, 0]
# List of sentences.
list_sentences = [ 'the movie is terrible',
'The Film was great.',
'It was just awful.']
# Or list of list of tokens.
list_sentences = [['the', 'movie', 'is', 'terrible'],
['The', 'Film', 'was', 'great.'],
['It', 'was', 'just', 'awful.']]
Run Code Online (Sandbox Code Playgroud)
我创建了以下自定义数据集:
import torch
from torch.utils.data import DataLoader, Dataset
class MyDataset(torch.utils.data.Dataset):
def __init__(self, sentences, labels):
self.sentences = sentences
self.labels = labels
def __getitem__(self, i):
result = {}
result['sentences'] = self.sentences[i]
result['label'] = self.labels[i]
return result
def __len__(self):
return len(self.labels)
Run Code Online (Sandbox Code Playgroud)
当我以句子列表的形式提供输入时,数据加载器会正确返回批量的完整句子。注意batch_size=2
:
list_sentences = [ 'the movie is terrible', 'The Film was great.', 'It was just awful.']
list_labels = [ 0, 1, 0]
dataset = MyDataset(list_sentences, list_labels)
dataloader = DataLoader(dataset, batch_size=2)
batch = next(iter(dataloader))
print(batch)
# {'sentences': ['the movie is terrible', 'The Film was great.'], <-- Great! 2 sentences in batch!
# 'label': tensor([0, 1])}
Run Code Online (Sandbox Code Playgroud)
该批次正确包含两个句子和两个标签,因为batch_size=2
。
然而,当我输入句子作为标记列表的预标记列表时,我得到了奇怪的结果:
list_sentences = [['the', 'movie', 'is', 'terrible'], ['The', 'Film', 'was', 'great.'], ['It', 'was', 'just', 'awful.']]
list_labels = [ 0, 1, 0]
dataset = MyDataset(list_sentences, list_labels)
dataloader = DataLoader(dataset, batch_size=2)
batch = next(iter(dataloader))
print(batch)
# {'sentences': [('the', 'The'), ('movie', 'Film'), ('is', 'was'), ('terrible', 'great.')], <-- WHAT?
# 'label': tensor([0, 1])}
Run Code Online (Sandbox Code Playgroud)
请注意,这批是一个包含单词对元组的sentences
单个列表。我期望成为两个列表的列表,如下所示:sentences
{'sentences': [['the', 'movie', 'is', 'terrible'], ['The', 'Film', 'was', 'great.']
Run Code Online (Sandbox Code Playgroud)
到底是怎么回事?
此行为是因为默认值在必须整理 s 时collate_fn
执行以下操作list
(即 的情况['sentences']
):
# [...]
elif isinstance(elem, container_abcs.Sequence):
# check to make sure that the elements in batch have consistent size
it = iter(batch)
elem_size = len(next(it))
if not all(len(elem) == elem_size for elem in it):
raise RuntimeError('each element in list of batch should be of equal size')
transposed = zip(*batch)
return [default_collate(samples) for samples in transposed]
Run Code Online (Sandbox Code Playgroud)
zip(*batch)
发生“问题”是因为,在最后两行中,当批处理是 a container_abcs.Sequence
(并且list
是)时,它将递归调用,并且zip
行为如下。
如你看到的:
batch = [['the', 'movie', 'is', 'terrible'], ['The', 'Film', 'was', 'great.']]
list(zip(*batch))
# [('the', 'The'), ('movie', 'Film'), ('is', 'was'), ('terrible', 'great.')]
Run Code Online (Sandbox Code Playgroud)
除了实现一个新的整理器并将其传递给DataLoader(..., collate_fn=mycollator)
. 例如,一个简单的丑陋的可能是:
def mycollator(batch):
assert all('sentences' in x for x in batch)
assert all('label' in x for x in batch)
return {
'sentences': [x['sentences'] for x in batch],
'label': torch.tensor([x['label'] for x in batch])
}
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
5156 次 |
最近记录: |