Mfi*_*if7 4 tensorflow tensorflow2.x tensorflow2
我正在尝试使用以下设置在 Windows 10 上运行 TensorFlow:
Anaconda3 与
蟒蛇3.8
张量流2.2.0
显卡:RTX3090
cuda_10.1.243
cudnn-v7.6.5.32 适用于 windows10-x64
运行以下代码需要 5 到 10 分钟才能打印输出。
import tensorflow as tf
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
Run Code Online (Sandbox Code Playgroud)
我立即得到以下输出,但在继续之前它会挂起几分钟。
1-17 04:03:00.039069: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll
2020-11-17 04:03:00.042677: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cublas64_10.dll
2020-11-17 04:03:00.045041: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cufft64_10.dll
2020-11-17 04:03:00.045775: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library curand64_10.dll
2020-11-17 04:03:00.049246: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusolver64_10.dll
2020-11-17 04:03:00.050633: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cusparse64_10.dll
2020-11-17 04:03:00.056731: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudnn64_7.dll
2020-11-17 04:03:00.056821: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1703] Adding visible gpu devices: 0
Run Code Online (Sandbox Code Playgroud)
在 colab 上运行 smae 代码只需一秒钟。
有什么建议么?谢谢
小智 6
我不明白为什么 Mux 的答案被否决,因为他是对的。Nvidia Ampere 无法在 CUDA 版本 < 11.1 上最佳运行,因为 Ampere 流式多处理器 (SM_86) 仅在 CUDA 11.1 上受支持,请参阅https://forums.developer.nvidia.com/t/can-rtx-3080-support- cuda-10-1/155849/2
但是,通过使用“export CUDA_CACHE_MAXSIZE=2147483648”增加默认 JIT 缓存大小,并将该环境变量设置为 2147483648 (4GB),可以在不更新 CUDA 的情况下直接解决您的问题。您仍然会在第一次启动时等待很长时间,请参阅https://www.tensorflow.org/install/gpu#hardware_requirements
RTX3090 采用 Amper 架构,需要 Cuda 11+。查看本指南: https://medium.com/@dun.chwong/the-simple-guide-deep-learning-with-rtx-3090-cuda-cudnn-tensorflow-keras-pytorch-e88a2a8249bc
归档时间: |
|
查看次数: |
3507 次 |
最近记录: |