每个文档/总计中哪 10 个单词的 TF-IDF 值最高?

Roz*_*low 4 python tf-idf pandas scikit-learn tfidfvectorizer

我正在尝试获取每个文档中 TF-IDF 得分最高的 10 个单词。

我的数据框中有一列包含来自我的各种文档的预处理文本(没有标点符号、停用词等)。在此示例中,一行表示一个文档。

我的数据框

它有 500 多行,我很好奇每行中最重要的单词。

所以我运行了以下代码:

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer()
vectors = vectorizer.fit_transform(df['liststring'])
feature_names = vectorizer.get_feature_names()
dense = vectors.todense()
denselist = dense.tolist()
df2 = pd.DataFrame(denselist, columns=feature_names)
Run Code Online (Sandbox Code Playgroud)

这给了我一个 TF-IDF 矩阵:

tf idf 矩阵

我的问题是,如何收集 TF-IDF 值最高的前 10 个单词?最好在我的原始数据框 (df) 中创建一个列,其中包含每行的前 10 个单词,同时还知道哪些单词总体上最重要。

Ser*_*nov 6

数据集的最小可重现示例20newsgroups是:

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer

X,y = fetch_20newsgroups(return_X_y = True)
tfidf = TfidfVectorizer()
X_tfidf = tfidf.fit_transform(X).toarray()
vocab = tfidf.vocabulary_
reverse_vocab = {v:k for k,v in vocab.items()}

feature_names = tfidf.get_feature_names()
df_tfidf = pd.DataFrame(X_tfidf, columns = feature_names)

idx = X_tfidf.argsort(axis=1)

tfidf_max10 = idx[:,-10:]

df_tfidf['top10'] = [[reverse_vocab.get(item) for item in row] for row in tfidf_max10 ]

df_tfidf['top10']

0        [this, was, funky, rac3, bricklin, tellme, umd...
1        [1qvfo9innc3s, upgrade, experiences, carson, k...
2        [heard, anybody, 160, display, willis, powerbo...
3        [joe, green, csd, iastate, jgreen, amber, p900...
4        [tom, n3p, c5owcb, expected, std, launch, jona...
                               ...                        
11309    [millie, diagnosis, headache, factory, scan, j...
11310    [plus, jiggling, screen, bodin, blank, mac, wi...
11311    [weight, ended, vertical, socket, the, westes,...
11312    [central, steven, steve, collins, bolson, hcrl...
11313    [california, kjg, 2101240, willow, jh2sc281xpm...
Name: top10, Length: 11314, dtype: object
Run Code Online (Sandbox Code Playgroud)

要获取 TfIdf 最高的前 10 个功能,请使用:

global_top10_idx = X_tfidf.max(axis=0).argsort()[-10:]
np.asarray(feature_names)[global_top10_idx]
Run Code Online (Sandbox Code Playgroud)

如果有什么不清楚的地方请询问。