你好,我正在尝试在字典上做一些事情,
这是一个头:
V1 V2 V3 scaf_name
1: scaffold_0 1 1 scaffold_0
2: scaffold_0 2 1 scaffold_0
3: scaffold_0 3 1 scaffold_0
4: scaffold_0 4 1 scaffold_0
5: scaffold_0 5 1 scaffold_0
6: scaffold_0 6 1 scaffold_0
Run Code Online (Sandbox Code Playgroud)
这是我尝试过的代码:
tab3<-tab %>%
group_by(scaf_name) %>%
summarise(Avg_group=mean(V3),Length=last(V2))
Run Code Online (Sandbox Code Playgroud)
这是我收到的错误消息
Error: Internal error: Dictionary is full!
Run Code Online (Sandbox Code Playgroud)
这是标签的尺寸
> dim(tab)
[1] 852355422 4
Run Code Online (Sandbox Code Playgroud)
所以看起来数据帧对于使用 dplyr 来说太大了,有人知道我该如何克服这个问题吗?
非常感谢
这是 df 的一小部分
> dput(tab_bis)
structure(list(V1 = c("scaffold_0", "scaffold_0", "scaffold_0",
"scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0",
"scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0",
"scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0",
"scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0",
"scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0",
"scaffold_0", "scaffold_0"), V2 = 1:30, V3 = c(1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L), scaf_name = c("scaffold_0",
"scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0",
"scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0",
"scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0",
"scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0",
"scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0",
"scaffold_0", "scaffold_0", "scaffold_0", "scaffold_0")), row.names = c(NA,
-30L), class = c("data.table", "data.frame"), .internal.selfref = <pointer: 0x556f4666b340>)
Run Code Online (Sandbox Code Playgroud)
这是 tidyverse 已经知道的问题。
https://github.com/r-lib/vctrs/issues/1133
您绕过了某个值的限制。他们必须解决它。
... uint32_t. I thought about just making sure that we store this instead as a uint64_t ...
并举例
https://github.com/tidyverse/dplyr/issues/5291
我的解决方案是使用 data.table。
library(data.table)
dt = data.table(tab)
dt[,.(Avg_group=mean(V3),Length=last(V2)),by = .(scaf_name)]
Run Code Online (Sandbox Code Playgroud)