AGe*_*eek 15 algorithm dynamic-programming
我在互联网上发现了以下问题,并想知道我将如何解决它:
问题:没有重新排列的整数分区
输入:非负数的排列S {s 1,... ..,s n }和整数k.
输出:将分区S分成k个或更少的范围,以最小化所有k个或更少范围的总和的最大值,而无需重新排序任何数字.*
请帮忙,看起来像有趣的问题......我实际上花了很多时间,但没有看到任何解决方案..
Mih*_*yan 21
让我们尝试使用动态编程解决问题.
注意:如果k> n,我们只能使用n个区间.
当S = { s 1,...,s i }和k = j时,考虑d [i] [j]是问题的解.所以很容易看出:
现在让我们看看为什么这样有效:
例:
S =(5,4,1,12),k = 2
d [0] [1] = 0,d [0] [2] = 0
d [1] [1] = 5,d [1] [2] = 5
d [2] [1] = 9,d [2] [2] = 5
d [3] [1] = 10,d [3] [2] = 5
d [4] [1] = 22,d [4] [2] = 12
码:
#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;
int main ()
{
int n;
const int INF = 2 * 1000 * 1000 * 1000;
cin >> n;
vector<int> s(n + 1);
for(int i = 1; i <= n; ++i)
cin >> s[i];
vector<int> first_sum(n + 1, 0);
for(int i = 1; i <= n; ++i)
first_sum[i] = first_sum[i - 1] + s[i];
int k;
cin >> k;
vector<vector<int> > d(n + 1);
for(int i = 0; i <= n; ++i)
d[i].resize(k + 1);
//point 1
for(int j = 0; j <= k; ++j)
d[0][j] = 0;
//point 2
for(int i = 1; i <= n; ++i)
d[i][1] = d[i - 1][1] + s[i]; //sum of integers from s[1] to s[i]
//point 3
for(int i = 1; i <= n; ++i)
for(int j = 2; j <= k; ++j)
{
d[i][j] = INF;
for(int t = 1; t <= i; ++t)
d[i][j] = min(d[i][j], max(d[i - t][j - 1], first_sum[i] - first_sum[i - t]));
}
cout << d[n][k] << endl;
return 0;
}
Run Code Online (Sandbox Code Playgroud)