Reg*_*sor 1 python serialization json google-cloud-language
我正在尝试使用谷歌云自然语言 API 来分析实体情绪。
from google.cloud import language_v1
import os
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'path/to/json'
client = language_v1.LanguageServiceClient()
text_content = 'Grapes are good. Bananas are bad.'
# Available types: PLAIN_TEXT, HTML
type_ = language_v1.Document.Type.PLAIN_TEXT
# Optional. If not specified, the language is automatically detected.
# For list of supported languages:
# https://cloud.google.com/natural-language/docs/languages
document = language_v1.Document(content=text_content, type_=language_v1.Document.Type.PLAIN_TEXT)
# Available values: NONE, UTF8, UTF16, UTF32
encoding_type = language_v1.EncodingType.UTF8
response = client.analyze_entity_sentiment(request = {'document': document, 'encoding_type': encoding_type})
Run Code Online (Sandbox Code Playgroud)
然后我从响应中打印出实体及其属性。
for entity in response.entities:
print('=' * 20)
print(type(entity))
print(entity)
====================
<class 'google.cloud.language_v1.types.language_service.Entity'>
name: "Grapes"
type_: OTHER
salience: 0.8335162997245789
mentions {
text {
content: "Grapes"
}
type_: COMMON
sentiment {
magnitude: 0.8999999761581421
score: 0.8999999761581421
}
}
sentiment {
magnitude: 0.8999999761581421
score: 0.8999999761581421
}
====================
<class 'google.cloud.language_v1.types.language_service.Entity'>
name: "Bananas"
type_: OTHER
salience: 0.16648370027542114
mentions {
text {
content: "Bananas"
begin_offset: 17
}
type_: COMMON
sentiment {
magnitude: 0.8999999761581421
score: -0.8999999761581421
}
}
sentiment {
magnitude: 0.8999999761581421
score: -0.8999999761581421
}
Run Code Online (Sandbox Code Playgroud)
现在我想以 JSON 或字典格式存储整个响应,以便我可以将其存储到数据库中的表中或进行处理。我尝试将 Google Cloud NLP API 实体情感输出转换为 JSON以及如何通过 JSON 序列化来自谷歌自然语言 API 的对象?(没有 __dict__ 属性)但它不起作用。
如果我使用
from google.protobuf.json_format import MessageToDict, MessageToJson
result_dict = MessageToDict(response)
result_json = MessageToJson(response)
Run Code Online (Sandbox Code Playgroud)
我收到一条错误消息
>>> result_dict = MessageToDict(response)
Traceback (most recent call last):
File "/Users/pmehta/Anaconda-3/anaconda3/envs/nlp_36/lib/python3.6/site-packages/proto/message.py", line 555, in __getattr__
pb_type = self._meta.fields[key].pb_type
KeyError: 'DESCRIPTOR'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/pmehta/Anaconda-3/anaconda3/envs/nlp_36/lib/python3.6/site-packages/google/protobuf/json_format.py", line 175, in MessageToDict
return printer._MessageToJsonObject(message)
File "/Users/pmehta/Anaconda-3/anaconda3/envs/nlp_36/lib/python3.6/site-packages/google/protobuf/json_format.py", line 209, in _MessageToJsonObject
message_descriptor = message.DESCRIPTOR
File "/Users/pmehta/Anaconda-3/anaconda3/envs/nlp_36/lib/python3.6/site-packages/proto/message.py", line 560, in __getattr__
raise AttributeError(str(ex))
AttributeError: 'DESCRIPTOR'
Run Code Online (Sandbox Code Playgroud)
如何解析此响应以将其正确转换为 json 或 dict?
作为google-cloud-language 2.0.0 迁移的一部分,响应消息由proto-plus包装原始 protobuf 消息的 提供。ParseDict并且MessageToDict是由protobuf和提供的方法,因为proto-plus包装了 proto 消息,这些 protobuf 方法不能再直接使用。
代替
from google.protobuf.json_format import MessageToDict, MessageToJson
result_dict = MessageToDict(response)
result_json = MessageToJson(response)
Run Code Online (Sandbox Code Playgroud)
和
import json
result_json = response.__class__.to_json(response)
result_dict = json.loads(result_json)
result_dict
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
542 次 |
| 最近记录: |