Pir*_*e X 2 sql count distinct window-functions amazon-redshift
我的问题类似于redshift:在窗口分区上计算不同的客户,但我有一个滚动窗口分区。
我的查询看起来像这样,但不支持Redshift中的 COUNT 内的不同查询
select p_date, seconds_read,
count(distinct customer_id) over (order by p_date rows between unbounded preceding and current row) as total_cumulative_customer
from table_x
Run Code Online (Sandbox Code Playgroud)
我的目标是计算截至每个日期的唯一客户总数(因此是滚动窗口)。
我尝试使用dense_rank()方法,但它会失败,因为我不能使用这样的窗口函数
select p_date, max(total_cumulative_customer) over ()
(select p_date, seconds_read,
dense_rank() over (order by customer_id rows between unbounded preceding and current row) as total_cumulative_customer -- WILL FAIL HERE
from table_x
Run Code Online (Sandbox Code Playgroud)
任何解决方法或不同的方法都会有所帮助!
编辑:
输入数据样本
+------+----------+--------------+
| Cust | p_date | seconds_read |
+------+----------+--------------+
| 1 | 1-Jan-20 | 10 |
| 2 | 1-Jan-20 | 20 |
| 4 | 1-Jan-20 | 30 |
| 5 | 1-Jan-20 | 40 |
| 6 | 5-Jan-20 | 50 |
| 3 | 5-Jan-20 | 60 |
| 2 | 5-Jan-20 | 70 |
| 1 | 5-Jan-20 | 80 |
| 1 | 5-Jan-20 | 90 |
| 1 | 7-Jan-20 | 100 |
| 3 | 7-Jan-20 | 110 |
| 4 | 7-Jan-20 | 120 |
| 7 | 7-Jan-20 | 130 |
+------+----------+--------------+
Run Code Online (Sandbox Code Playgroud)
预期输出
+----------+--------------------------+------------------+--------------------------------------------+
| p_date | total_distinct_cum_cust | sum_seconds_read | Comment |
+----------+--------------------------+------------------+--------------------------------------------+
| 1-Jan-20 | 4 | 100 | total distinct cust = 4 i.e. 1,2,4,5 |
| 5-Jan-20 | 6 | 450 | total distinct cust = 6 i.e. 1,2,3,4,5,6 |
| 7-Jan-20 | 7 | 910 | total distinct cust = 6 i.e. 1,2,3,4,5,6,7 |
+----------+--------------------------+------------------+--------------------------------------------+
Run Code Online (Sandbox Code Playgroud)
对于此操作:
select p_date, seconds_read,
count(distinct customer_id) over (order by p_date rows between unbounded preceding and current row) as total_cumulative_customer
from table_x;
Run Code Online (Sandbox Code Playgroud)
您可以通过两个级别的聚合来完成您想要的几乎所有操作:
select min_p_date,
sum(count(*)) over (order by min_p_date rows between unbounded preceding and current row) as running_distinct_customers
from (select customer_id, min(p_date) as min_p_date
from table_x
group by customer_id
) c
group by min_p_date;
Run Code Online (Sandbox Code Playgroud)
对读取的秒数求和也有点棘手,但您可以使用相同的想法:
select p_date,
sum(sum(seconds_read)) over (order by p_date rows between unbounded preceding and current row) as seconds_read,
sum(sum(case when seqnum = 1 then 1 else 0 end)) over (order by p_date rows between unbounded preceding and current row) as running_distinct_customers
from (select customer_id, p_date, seconds_read,
row_number() over (partition by customer_id order by p_date) as seqnum
from table_x
) c
group by min_p_date;
Run Code Online (Sandbox Code Playgroud)