cre*_*esk 6 python parallel-processing generator multiprocessing python-multiprocessing
假设我有 N 个生成器gen_1, ..., gen_N,其中每个生成器都会产生相同数量的值。我想要一个生成器gen,使其在 N 个并行进程中运行 gen_1, ..., gen_N 并产生(next(gen_1), next(gen_2), ... next(gen_N))
那是我想要的:
def gen():
yield (next(gen_1), next(gen_2), ... next(gen_N))
Run Code Online (Sandbox Code Playgroud)
这样每个 gen_i 都在自己的进程上运行。是否有可能做到这一点?我尝试在以下虚拟示例中执行此操作但没有成功:
A = range(4)
def gen(a):
B = ['a', 'b', 'c']
for b in B:
yield b + str(a)
def target(g):
return next(g)
processes = [Process(target=target, args=(gen(a),)) for a in A]
for p in processes:
p.start()
for p in processes:
p.join()
Run Code Online (Sandbox Code Playgroud)
但是我得到了错误TypeError: cannot pickle 'generator' object。
编辑:
我修改了@darkonaut 的答案以满足我的需要。我发布它以防你们中的一些人觉得它有用。我们首先定义几个效用函数:
from itertools import zip_longest
from typing import List, Generator
def grouper(iterable, n, fillvalue=iter([])):
"Collect data into fixed-length chunks or blocks"
args = [iter(iterable)] * n
return zip_longest(*args, fillvalue=fillvalue)
def split_generators_into_batches(generators: List[Generator], n_splits):
chunks = grouper(generators, len(generators) // n_splits + 1)
return [zip_longest(*chunk) for chunk in chunks]
Run Code Online (Sandbox Code Playgroud)
以下类负责将任意数量的生成器拆分为 n(进程数)个批次并对其进行处理以产生所需的结果:
import multiprocessing as mp
class GeneratorParallelProcessor:
SENTINEL = 'S'
def __init__(self, generators, n_processes = 2 * mp.cpu_count()):
self.n_processes = n_processes
self.generators = split_generators_into_batches(list(generators), n_processes)
self.queue = mp.SimpleQueue()
self.barrier = mp.Barrier(n_processes + 1)
self.sentinels = [self.SENTINEL] * n_processes
self.processes = [
mp.Process(target=self._worker, args=(self.barrier, self.queue, gen)) for gen in self.generators
]
def process(self):
for p in self.processes:
p.start()
while True:
results = list(itertools.chain(*(self.queue.get() for _ in self.generators)))
if results != self.sentinels:
yield results
self.barrier.wait()
else:
break
for p in self.processes:
p.join()
def _worker(self, barrier, queue, generator):
for x in generator:
queue.put(x)
barrier.wait()
queue.put(self.SENTINEL)
Run Code Online (Sandbox Code Playgroud)
要使用它,只需执行以下操作:
parallel_processor = GeneratorParallelProcessor(generators)
for grouped_generator in parallel_processor.process():
output_handler(grouped_generator)
Run Code Online (Sandbox Code Playgroud)
有可能通过一些努力获得这样一个“统一并行生成器(UPG) ”(尝试创造一个名字),但是正如@jasonharper已经提到的,你肯定需要在子进程中组装子生成器,因为一个正在运行的子生成器发电机不能被酸洗。
下面的模式是可重复使用的,只有生成器函数gen()是为此示例定制的。该设计用于multiprocessing.SimpleQueue将生成器结果返回给父级并 multiprocessing.Barrier用于同步。
调用Barrier.wait()将阻塞调用者(任何进程中的线程),直到指定的数量parties已调用.wait(),然后当前等待的所有线程Barrier同时释放。此处的使用确保仅在父级收到迭代的所有结果后才Barrier开始计算进一步的生成器结果,这可能有助于控制总体内存消耗。
使用的并行工作线程的数量等于您在gen_args_tuples可迭代中提供的参数元组的数量,因此gen_args_tuples=zip(range(4))将使用四个工作线程。有关更多详细信息,请参阅代码中的注释。
import multiprocessing as mp
SENTINEL = 'SENTINEL'
def gen(a):
"""Your individual generator function."""
lst = ['a', 'b', 'c']
for ch in lst:
for _ in range(int(10e6)): # some dummy computation
pass
yield ch + str(a)
def _worker(i, barrier, queue, gen_func, gen_args):
for x in gen_func(*gen_args):
print(f"WORKER-{i} sending item.")
queue.put((i, x))
barrier.wait()
queue.put(SENTINEL)
def parallel_gen(gen_func, gen_args_tuples):
"""Construct and yield from parallel generators
build from `gen_func(gen_args)`.
"""
gen_args_tuples = list(gen_args_tuples) # ensure list
n_gens = len(gen_args_tuples)
sentinels = [SENTINEL] * n_gens
queue = mp.SimpleQueue()
barrier = mp.Barrier(n_gens + 1) # `parties`: + 1 for parent
processes = [
mp.Process(target=_worker, args=(i, barrier, queue, gen_func, args))
for i, args in enumerate(gen_args_tuples)
]
for p in processes:
p.start()
while True:
results = [queue.get() for _ in range(n_gens)]
if results != sentinels:
results.sort()
yield tuple(r[1] for r in results) # sort and drop ids
barrier.wait() # all workers are waiting
# already, so this will unblock immediately
else:
break
for p in processes:
p.join()
if __name__ == '__main__':
for res in parallel_gen(gen_func=gen, gen_args_tuples=zip(range(4))):
print(res)
Run Code Online (Sandbox Code Playgroud)
输出:
import multiprocessing as mp
SENTINEL = 'SENTINEL'
def gen(a):
"""Your individual generator function."""
lst = ['a', 'b', 'c']
for ch in lst:
for _ in range(int(10e6)): # some dummy computation
pass
yield ch + str(a)
def _worker(i, barrier, queue, gen_func, gen_args):
for x in gen_func(*gen_args):
print(f"WORKER-{i} sending item.")
queue.put((i, x))
barrier.wait()
queue.put(SENTINEL)
def parallel_gen(gen_func, gen_args_tuples):
"""Construct and yield from parallel generators
build from `gen_func(gen_args)`.
"""
gen_args_tuples = list(gen_args_tuples) # ensure list
n_gens = len(gen_args_tuples)
sentinels = [SENTINEL] * n_gens
queue = mp.SimpleQueue()
barrier = mp.Barrier(n_gens + 1) # `parties`: + 1 for parent
processes = [
mp.Process(target=_worker, args=(i, barrier, queue, gen_func, args))
for i, args in enumerate(gen_args_tuples)
]
for p in processes:
p.start()
while True:
results = [queue.get() for _ in range(n_gens)]
if results != sentinels:
results.sort()
yield tuple(r[1] for r in results) # sort and drop ids
barrier.wait() # all workers are waiting
# already, so this will unblock immediately
else:
break
for p in processes:
p.join()
if __name__ == '__main__':
for res in parallel_gen(gen_func=gen, gen_args_tuples=zip(range(4))):
print(res)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
170 次 |
| 最近记录: |