如何在等待响应时增加 AWS Sagemaker 调用超时

Sti*_*fel 7 python timeout inference amazon-web-services amazon-sagemaker

我向 aws sagemaker 部署了一个大型 3D 模型。推理将需要 2 分钟或更长时间。从 Python 调用预测器时出现以下错误:

An error occurred (ModelError) when calling the InvokeEndpoint operation: Received server error (0) from model with message "Your invocation timed out while waiting for a response from container model. Review the latency metrics for each container in Amazon CloudWatch, resolve the issue, and try again."'
Run Code Online (Sandbox Code Playgroud)

在 Cloud Watch 中,我还看到容器正在处理时出现一些 PING 超时:

2020-10-07T16:02:39.718+02:00 2020/10/07 14:02:39 https://forums.aws.amazon.com/ 106#106: *251 upstream timed out (110: Connection timed out) while reading response header from upstream, client: 10.32.0.2, server: , request: "GET /ping HTTP/1.1", upstream: "http://unix:/tmp/gunicorn.sock/ping", host: "model.aws.local:8080"
Run Code Online (Sandbox Code Playgroud)

如何增加调用超时?

或者有没有办法对 sagemaker 端点进行异步调用?

pyg*_*eek 7

\xe2\x80\x99s 目前无法增加超时\xe2\x80\x94这是 GitHub 中的一个未决问题。浏览这个问题和类似的问题,似乎你可以将批量转换与推理结合使用。

\n

参考

\n

/sf/answers/3894987281/

\n

Sagemaker Python SDK超时问题:https://github.com/aws/sagemaker-python-sdk/issues/1119

\n