mon*_*mon 2 python keras tensorflow
请帮助了解错误原因以及如何解决。
import tensorflow as tf
import numpy as np
fashion_mnist = tf.keras.datasets.fashion_mnist
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
x_full = np.concatenate((x_train, x_test), axis=0)
layer = tf.keras.layers.experimental.preprocessing.Normalization()
layer.adapt(x_full)
layer(x_train)
Run Code Online (Sandbox Code Playgroud)
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-16-699c47b6db55> in <module>
----> 1 ds = layer(x_train)
~/conda/envs/tensorflow/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer.py in __call__(self, *args, **kwargs)
966 with base_layer_utils.autocast_context_manager(
967 self._compute_dtype):
--> 968 outputs = self.call(cast_inputs, *args, **kwargs)
969 self._handle_activity_regularization(inputs, outputs)
970 self._set_mask_metadata(inputs, outputs, input_masks)
~/conda/envs/tensorflow/lib/python3.7/site-packages/tensorflow/python/keras/layers/preprocessing/normalization.py in call(self, inputs)
109 mean = array_ops.reshape(self.mean, self._broadcast_shape)
110 variance = array_ops.reshape(self.variance, self._broadcast_shape)
--> 111 return (inputs - mean) / math_ops.sqrt(variance)
112
113 def compute_output_shape(self, input_shape):
~/conda/envs/tensorflow/lib/python3.7/site-packages/tensorflow/python/ops/math_ops.py in binary_op_wrapper(x, y)
982 with ops.name_scope(None, op_name, [x, y]) as name:
983 if isinstance(x, ops.Tensor) and isinstance(y, ops.Tensor):
--> 984 return func(x, y, name=name)
985 elif not isinstance(y, sparse_tensor.SparseTensor):
986 try:
~/conda/envs/tensorflow/lib/python3.7/site-packages/tensorflow/python/ops/gen_math_ops.py in sub(x, y, name)
10098 pass # Add nodes to the TensorFlow graph.
10099 except _core._NotOkStatusException as e:
> 10100 _ops.raise_from_not_ok_status(e, name)
10101 # Add nodes to the TensorFlow graph.
10102 _, _, _op, _outputs = _op_def_library._apply_op_helper(
~/conda/envs/tensorflow/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in raise_from_not_ok_status(e, name)
6651 message = e.message + (" name: " + name if name is not None else "")
6652 # pylint: disable=protected-access
-> 6653 six.raise_from(core._status_to_exception(e.code, message), None)
6654 # pylint: enable=protected-access
6655
~/conda/envs/tensorflow/lib/python3.7/site-packages/six.py in raise_from(value, from_value)
InvalidArgumentError: cannot compute Sub as input #1(zero-based) was expected to be a uint8 tensor but is a float tensor [Op:Sub]
Run Code Online (Sandbox Code Playgroud)
尝试了 dtype arg 但同样的错误。
layer = tf.keras.layers.experimental.preprocessing.Normalization(dtype='float32')
Run Code Online (Sandbox Code Playgroud)
Divide by 1.0 fixed the issue but not sure the original cause.
x_full = np.concatenate((x_train, x_test), axis=0) / 1.0
x_train = x_train / 1.0
Run Code Online (Sandbox Code Playgroud)
Does Keras only works with float32?
原因是preprocessing.Normalization预期的float32,但你的数据是uint8这样的,因此出现了错误。
这实际上是 Tensorflow 的问题,而不是 Keras 本身的问题,因为计算速度更快。
提醒:float 和 int 计算在处理器中的不同位置,并且每个处理器对不同数据类型的性能不同,例如 nvidia 的 GPU 比 16 更快,float32而float16ARM CPU 的 16 更快。
Pytorch 也需要两个变量具有相同的数据类型,否则它将无法工作。
在Python中用一个整数除以一个浮点数会自动给你一个新的浮点数,x_train = x_train / 1.0将得到x_train float32(或者float64或者float16取决于你在这里有什么~/.keras/keras.json)float32。
| 归档时间: |
|
| 查看次数: |
9962 次 |
| 最近记录: |