如何在 R 中使用 Monte Carlo 进行 ARIMA 模拟函数

Dan*_*mes 7 r montecarlo arima

这是我想用 R 做的算法:

  1. ARIMA模型到arima.sim()函数模拟10个时间序列数据集
  2. 拆分成系列的子系列的可能2s3s4s5s6s7s8s,和9s
  3. 对于每个大小,对带有替换的块进行重新采样,对于新系列,并ARIMA通过auto.arima()函数从每个块大小的子系列中获得最佳模型。
  4. 获取每个子系列的每个块大小RMSE

下面的R函数完成了。

## Load packages and prepare multicore process
library(forecast)
library(future.apply)
plan(multisession)
library(parallel)
library(foreach)
library(doParallel)
n_cores <- detectCores()
cl <- makeCluster(n_cores)
registerDoParallel(cores = detectCores())
## simulate ARIMA(1,0, 0)
#n=10; phi <- 0.6; order <- c(1, 0, 0)
bootstrap1 <- function(n, phi){
  ts <- arima.sim(n, model = list(ar=phi, order = c(1, 0, 0)), sd = 1)
  ########################################################
  ## create a vector of block sizes
  t <- length(ts)    # the length of the time series
  lb <- seq(n-2)+1   # vector of block sizes to be 1 < l < n (i.e to be between 1 and n exclusively)
  ########################################################
  ## This section create matrix to store block means
  BOOTSTRAP <- matrix(nrow = 1, ncol = length(lb))
  colnames(BOOTSTRAP) <-lb
  ########################################################
  ## This section use foreach function to do detail in the brace
  BOOTSTRAP <- foreach(b = 1:length(lb), .combine = 'cbind') %do%{
    l <- lb[b]# block size at each instance 
    m <- ceiling(t / l)                                 # number of blocks
    blk <- split(ts, rep(1:m, each=l, length.out = t))  # divides the series into blocks
    ######################################################
    res<-sample(blk, replace=T, 10)        # resamples the blocks
    res.unlist <- unlist(res, use.names = FALSE)   # unlist the bootstrap series
    train <- head(res.unlist, round(length(res.unlist) - 10)) # Train set
    test <- tail(res.unlist, length(res.unlist) - length(train)) # Test set
    nfuture <- forecast::forecast(train, model = forecast::auto.arima(train), lambda=0, biasadj=TRUE, h = length(test))$mean        # makes the `forecast of test set
    RMSE <- Metrics::rmse(test, nfuture)      # RETURN RMSE
    BOOTSTRAP[b] <- RMSE
  }
  BOOTSTRAPS <- matrix(BOOTSTRAP, nrow = 1, ncol = length(lb))
  colnames(BOOTSTRAPS) <- lb
  BOOTSTRAPS
  return(list(BOOTSTRAPS))
}
Run Code Online (Sandbox Code Playgroud)

调用函数

bootstrap1(10, 0.6)
Run Code Online (Sandbox Code Playgroud)

我得到以下结果:

##              2        3         4        5        6        7         8         9
##  [1,] 0.8920703 0.703974 0.6990448 0.714255 1.308236 0.809914 0.5315476 0.8175382
Run Code Online (Sandbox Code Playgroud)

我想重复上面step 1step 4按时间顺序,那么我认为的Monte Carlo技术R。因此,我加载它的包并运行以下函数:

param_list=list("n"=10, "phi"=0.6)
library(MonteCarlo)
MC_result<-MonteCarlo(func = bootstrap1, nrep=3, param_list = param_list)
Run Code Online (Sandbox Code Playgroud)

期望得到类似于以下matrix形式的结果:

##           [,2]     [,3]      [,4]    [,5]       [,6]      [,7]      [,8]      [,9]
##  [1,] 0.8920703 0.703974  0.6990448 0.714255  1.308236  0.809914  0.5315476 0.8175382
##  [2,] 0.8909836 0.8457537 1.095148  0.8918468 0.8913282 0.7894167 0.8911484 0.8694729
##  [3,] 1.586785  1.224003  1.375026  1.292847  1.437359  1.418744  1.550254  1.30784
Run Code Online (Sandbox Code Playgroud)

但我收到以下错误消息:

MonteCarlo 中的错误(func = bootstrap1,nrep = 3,param_list = param_list):func 必须返回一个包含命名组件的列表。每个组件都必须是标量。

如何找到获得上述所需结果并使结果可重现的方法?

Mar*_*old 5

您收到此错误消息是因为 MonteCarlo 期望为模拟bootstrap1()接受一个参数组合,并且每次复制仅返回一个值 ( RMSE)。这不是这里的情况,因为块长度(lb)是由模拟的时间序列(长度决定n bootstrap1,所以你会得到结果n - 2块长度为每个呼叫。

一种解决方案是将块长度作为参数传递并bootstrap1()适当地重写:

library(MonteCarlo)
library(forecast)
library(Metrics)

# parameter grids
n <- 10 # length of time series
lb <- seq(n-2) + 1 # vector of block sizes
phi <- 0.6 # autoregressive parameter
reps <- 3 # monte carlo replications

# simulation function  
bootstrap1 <- function(n, lb, phi) {
    
    #### simulate ####
    ts <- arima.sim(n, model = list(ar = phi, order = c(1, 0, 0)), sd = 1)
    
    #### devide ####
    m <- ceiling(n / lb) # number of blocks
    blk <- split(ts, rep(1:m, each = lb, length.out = n)) # divide into blocks
    #### resample ####
    res <- sample(blk, replace = TRUE, 10)        # resamples the blocks
    res.unlist <- unlist(res, use.names = FALSE)   # unlist the bootstrap series
    #### train, forecast ####
    train <- head(res.unlist, round(length(res.unlist) - 10)) # train set
    test <- tail(res.unlist, length(res.unlist) - length(train)) # test set
    nfuture <- forecast(train, # forecast
                        model = auto.arima(train), 
                        lambda = 0, biasadj = TRUE, h = length(test))$mean    
    ### metric ####
    RMSE <- rmse(test, nfuture) # return RMSE
    return(
      list("RMSE" = RMSE)
    )
}

param_list = list("n" = n, "lb" = lb, "phi" = phi)

Run Code Online (Sandbox Code Playgroud)

要运行模拟,请将参数传递bootstrap1()MonteCarlo()。要并行执行模拟,您需要通过 设置内核数ncpus。MonteCarlo 包使用 snowFall,因此它应该在 Windows 上运行。

请注意,我还设置了raw = T(否则结果将是所有复制的平均值)。之前设置种子将使结果可重复。

set.seed(123)
MC_result <- MonteCarlo(func = bootstrap1, 
                        nrep = reps,
                        ncpus = parallel::detectCores() - 1,
                        param_list = param_list,
                        export_also = list(
                         "packages" = c("forecast", "Metrics")
                        ),
                        raw = T)
Run Code Online (Sandbox Code Playgroud)

结果是一个数组。我认为最好通过以下方式将其转换为 data.frame MakeFrame()

Frame <- MakeFrame(MC_result)
Run Code Online (Sandbox Code Playgroud)

虽然很容易得到一个reps x lb矩阵:

matrix(Frame$RMSE, ncol = length(lb), dimnames = list(1:reps, lb))
Run Code Online (Sandbox Code Playgroud)