Dan*_*mes 7 r montecarlo arima
这是我想用 R 做的算法:
ARIMA模型到arima.sim()函数模拟10个时间序列数据集2s,3s,4s,5s,6s,7s,8s,和9s。ARIMA通过auto.arima()函数从每个块大小的子系列中获得最佳模型。RMSE。下面的R函数完成了。
## Load packages and prepare multicore process
library(forecast)
library(future.apply)
plan(multisession)
library(parallel)
library(foreach)
library(doParallel)
n_cores <- detectCores()
cl <- makeCluster(n_cores)
registerDoParallel(cores = detectCores())
## simulate ARIMA(1,0, 0)
#n=10; phi <- 0.6; order <- c(1, 0, 0)
bootstrap1 <- function(n, phi){
ts <- arima.sim(n, model = list(ar=phi, order = c(1, 0, 0)), sd = 1)
########################################################
## create a vector of block sizes
t <- length(ts) # the length of the time series
lb <- seq(n-2)+1 # vector of block sizes to be 1 < l < n (i.e to be between 1 and n exclusively)
########################################################
## This section create matrix to store block means
BOOTSTRAP <- matrix(nrow = 1, ncol = length(lb))
colnames(BOOTSTRAP) <-lb
########################################################
## This section use foreach function to do detail in the brace
BOOTSTRAP <- foreach(b = 1:length(lb), .combine = 'cbind') %do%{
l <- lb[b]# block size at each instance
m <- ceiling(t / l) # number of blocks
blk <- split(ts, rep(1:m, each=l, length.out = t)) # divides the series into blocks
######################################################
res<-sample(blk, replace=T, 10) # resamples the blocks
res.unlist <- unlist(res, use.names = FALSE) # unlist the bootstrap series
train <- head(res.unlist, round(length(res.unlist) - 10)) # Train set
test <- tail(res.unlist, length(res.unlist) - length(train)) # Test set
nfuture <- forecast::forecast(train, model = forecast::auto.arima(train), lambda=0, biasadj=TRUE, h = length(test))$mean # makes the `forecast of test set
RMSE <- Metrics::rmse(test, nfuture) # RETURN RMSE
BOOTSTRAP[b] <- RMSE
}
BOOTSTRAPS <- matrix(BOOTSTRAP, nrow = 1, ncol = length(lb))
colnames(BOOTSTRAPS) <- lb
BOOTSTRAPS
return(list(BOOTSTRAPS))
}
Run Code Online (Sandbox Code Playgroud)
调用函数
bootstrap1(10, 0.6)
Run Code Online (Sandbox Code Playgroud)
我得到以下结果:
## 2 3 4 5 6 7 8 9
## [1,] 0.8920703 0.703974 0.6990448 0.714255 1.308236 0.809914 0.5315476 0.8175382
Run Code Online (Sandbox Code Playgroud)
我想重复上面step 1来step 4按时间顺序,那么我认为的Monte Carlo技术R。因此,我加载它的包并运行以下函数:
param_list=list("n"=10, "phi"=0.6)
library(MonteCarlo)
MC_result<-MonteCarlo(func = bootstrap1, nrep=3, param_list = param_list)
Run Code Online (Sandbox Code Playgroud)
期望得到类似于以下matrix形式的结果:
## [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
## [1,] 0.8920703 0.703974 0.6990448 0.714255 1.308236 0.809914 0.5315476 0.8175382
## [2,] 0.8909836 0.8457537 1.095148 0.8918468 0.8913282 0.7894167 0.8911484 0.8694729
## [3,] 1.586785 1.224003 1.375026 1.292847 1.437359 1.418744 1.550254 1.30784
Run Code Online (Sandbox Code Playgroud)
但我收到以下错误消息:
MonteCarlo 中的错误(func = bootstrap1,nrep = 3,param_list = param_list):func 必须返回一个包含命名组件的列表。每个组件都必须是标量。
如何找到获得上述所需结果并使结果可重现的方法?
您收到此错误消息是因为 MonteCarlo 期望为模拟bootstrap1()接受一个参数组合,并且每次复制仅返回一个值 ( RMSE)。这不是这里的情况,因为块长度(lb)是由模拟的时间序列(长度决定n)内 bootstrap1,所以你会得到结果n - 2块长度为每个呼叫。
一种解决方案是将块长度作为参数传递并bootstrap1()适当地重写:
library(MonteCarlo)
library(forecast)
library(Metrics)
# parameter grids
n <- 10 # length of time series
lb <- seq(n-2) + 1 # vector of block sizes
phi <- 0.6 # autoregressive parameter
reps <- 3 # monte carlo replications
# simulation function
bootstrap1 <- function(n, lb, phi) {
#### simulate ####
ts <- arima.sim(n, model = list(ar = phi, order = c(1, 0, 0)), sd = 1)
#### devide ####
m <- ceiling(n / lb) # number of blocks
blk <- split(ts, rep(1:m, each = lb, length.out = n)) # divide into blocks
#### resample ####
res <- sample(blk, replace = TRUE, 10) # resamples the blocks
res.unlist <- unlist(res, use.names = FALSE) # unlist the bootstrap series
#### train, forecast ####
train <- head(res.unlist, round(length(res.unlist) - 10)) # train set
test <- tail(res.unlist, length(res.unlist) - length(train)) # test set
nfuture <- forecast(train, # forecast
model = auto.arima(train),
lambda = 0, biasadj = TRUE, h = length(test))$mean
### metric ####
RMSE <- rmse(test, nfuture) # return RMSE
return(
list("RMSE" = RMSE)
)
}
param_list = list("n" = n, "lb" = lb, "phi" = phi)
Run Code Online (Sandbox Code Playgroud)
要运行模拟,请将参数传递bootstrap1()给MonteCarlo()。要并行执行模拟,您需要通过 设置内核数ncpus。MonteCarlo 包使用 snowFall,因此它应该在 Windows 上运行。
请注意,我还设置了raw = T(否则结果将是所有复制的平均值)。之前设置种子将使结果可重复。
set.seed(123)
MC_result <- MonteCarlo(func = bootstrap1,
nrep = reps,
ncpus = parallel::detectCores() - 1,
param_list = param_list,
export_also = list(
"packages" = c("forecast", "Metrics")
),
raw = T)
Run Code Online (Sandbox Code Playgroud)
结果是一个数组。我认为最好通过以下方式将其转换为 data.frame MakeFrame():
Frame <- MakeFrame(MC_result)
Run Code Online (Sandbox Code Playgroud)
虽然很容易得到一个reps x lb矩阵:
matrix(Frame$RMSE, ncol = length(lb), dimnames = list(1:reps, lb))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
667 次 |
| 最近记录: |