我有一个以下形式的数据框:
time value label
0 2020-01-01 -0.556014 high
1 2020-01-02 0.185451 high
2 2020-01-03 -0.401111 medium
3 2020-01-04 0.436111 medium
4 2020-01-05 0.412933 high
5 2020-01-06 0.636421 high
6 2020-01-07 1.168237 high
7 2020-01-08 1.205073 high
8 2020-01-09 0.798674 high
9 2020-01-10 0.174116 high
Run Code Online (Sandbox Code Playgroud)
我想填充一个数据帧列表,其中每个数据帧都是在列中的字符串label更改时构建的。所以第一个数据框是:
time value label
0 2020-01-01 -0.556014 high
1 2020-01-02 0.185451 high
Run Code Online (Sandbox Code Playgroud)
第二个数据框是:
time value label
2 2020-01-03 -0.401111 medium
3 2020-01-04 0.436111 medium
Run Code Online (Sandbox Code Playgroud)
等等。所需的列表是[df, df, ...]. 如果您认为字典是更合适的容器,我根本不介意。
有一个类似的帖子,名为split dataframe pandas if order of columns value change,但仅处理数值的更改。我已经做了一些尝试,但在将行值与label前一个值进行比较时不断遇到索引问题。所以任何建议都会很棒!
这是一个可重现的片段:
# imports
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import numpy as np
import random
# settings
observations = 100
np.random.seed(5)
value = np.random.uniform(low=-1, high=1, size=observations).tolist()
time = [t for t in pd.date_range('2020', freq='D', periods=observations).format()]
df=pd.DataFrame({'time': time,
'value':value})
df['value']=df['value'].cumsum()
def classify(e):
if e > 0.75: return 'high'
if e > 0.25: return 'medium'
if e >= 0: return 'low'
df['label1'] = [(elem-df['value'].min())/(df['value'].max()-df['value'].min()) for elem in df['value']]
df['label'] = [classify(elem) for elem in df['label1']]
df = df.drop('label1', 1)
df
Run Code Online (Sandbox Code Playgroud)
我将创建一个在每次更改时递增的列,然后按该列进行分组。如果您需要单独的数据框,您可以在循环中分配它们。
df['group'] = df['label'].ne(df['label'].shift()).cumsum()
df = df.groupby('group')
dfs = []
for name, data in df:
dfs.append(data)
Run Code Online (Sandbox Code Playgroud)
dfs 将是一个数据帧列表,如下所示:
[ time value label group
0 2020-01-01 -0.556014 high 1
1 2020-01-02 0.185451 high 1,
time value label group
2 2020-01-03 -0.401111 medium 2
3 2020-01-04 0.436111 medium 2,
time value label group
4 2020-01-05 0.412933 high 3
5 2020-01-06 0.636421 high 3
6 2020-01-07 1.168237 high 3
7 2020-01-08 1.205073 high 3
8 2020-01-09 0.798674 high 3
9 2020-01-10 0.174116 high 3]
Run Code Online (Sandbox Code Playgroud)