如何将 StandardScaler() 转换转换回数据帧?

dmm*_*mmd 2 python dataframe pandas scikit-learn sklearn-pandas

我正在使用一个模型,在分为训练和测试后,我想应用 StandardScaler()。但是,此转换将我的数据转换为数组,我想保留之前的格式。我怎样才能做到这一点?

基本上,我有:

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

X = df[features]
y = df[["target"]]

X_train, X_test, y_train, y_test = train_test_split(
    X, y, train_size=0.7, random_state=42
)

sc = StandardScaler()
X_train_sc = sc.fit_transform(X_train)
X_test_sc = sc.transform(X_test)
Run Code Online (Sandbox Code Playgroud)

我怎样才能恢复X_train_sc到原来的格式X_train

更新:我不想回到X_train_sc缩放之前。我只想X_train_sc以最简单的方式成为一个数据框。

FBr*_*esi 6

正如您所提到的,将缩放结果应用到 numpy 数组中,要获取数据帧,您可以初始化一个新数据帧:

import pandas as pd

cols = X_train.columns
sc = StandardScaler()
X_train_sc = pd.DataFrame(sc.fit_transform(X_train), columns=cols)
X_test_sc = pd.DataFrame(sc.transform(X_test), columns=cols)
Run Code Online (Sandbox Code Playgroud)

2022 年更新

从 scikit-learn 版本 1.2.0 开始,可以使用set_outputAPI 来配置转换器以输出 pandas DataFrame(查看文档示例

上面的例子可以简化如下:

import pandas as pd

cols = X_train.columns
sc = StandardScaler().set_output(transform="pandas")
X_train_sc = sc.fit_transform(X_train)
X_test_sc = sc.transform(X_test)
Run Code Online (Sandbox Code Playgroud)