可视化多个组中事件的存在/不存在的最佳方法

use*_*689 0 r data-visualization radar-chart circos

我有一个数据集,其中记录了 40 个特定基因中是否存在突变,比较了 20 种组织类型的正常组织(例如肺组织)与来自该组织的肿瘤(例如肺肿瘤)。我正在努力寻找可视化这些数据的最佳方法。

数据的一个子集:

Gene    Lung_Normal Lung_Cancer Skin_Normal Skin_Cancer Brain_Normal    Brain_Cancer
Gene_1  TRUE    TRUE    TRUE    TRUE    TRUE    TRUE
Gene_2  TRUE    TRUE    TRUE    TRUE    TRUE    TRUE
Gene_3  FALSE   TRUE    FALSE   FALSE   FALSE   FALSE
Gene_4  FALSE   FALSE   FALSE   FALSE   FALSE   FALSE
Gene_5  FALSE   TRUE    FALSE   FALSE   FALSE   TRUE
Gene_6  FALSE   FALSE   TRUE    TRUE    TRUE    TRUE
Gene_7  FALSE   FALSE   FALSE   TRUE    FALSE   FALSE
Gene_8  FALSE   FALSE   FALSE   TRUE    FALSE   TRUE
Gene_9  FALSE   TRUE    FALSE   FALSE   FALSE   FALSE
Gene_10 FALSE   FALSE   FALSE   TRUE    FALSE   TRUE
Run Code Online (Sandbox Code Playgroud)

我们想要传达的关键信息是,虽然相同的 3-4 个基因在正常组织中经常发生突变,但每个肿瘤都有更多的额外基因突变,并且肿瘤具有更多的多样性。我可以将它保留为这样的表格,但我很想找到一种以清晰的方式可视化信息的好方法。

我想尝试制作一个图形,如马戏团情节,用一个圆圈和两个环代表所有数据。内环是正常组织,外环是癌组织,每个部分在内环上包含相关的正常组织,在外环上包含相关的癌组织。每个基因都将进行颜色编码,并且只有在发生突变时才会显示。因此,对于所有正常组织,该片段将显示 2-3 个突变基因的 2-3 种颜色,而外部癌症片段将显示更多颜色片段,代表更多突变。

但是,我还没有找到可以创建这种可视化效果的绘图软件。有谁知道制作这样的可视化的方法?即使只是将我指向 R 包也会非常有帮助。我研究过马戏团和雷达图,但我还没有找到一个可以实现我想到的可视化类型的包,只显示在每种情况下发生的事件。

如果有人认为不同类型的可视化可以表示这些数据,请告诉我,我很乐意考虑清楚地表示数据的替代方案。

先感谢您。

Dav*_*ong 5

不确定这是否是你要找的,但我试了一下。另外,根据上面的描述,我不完全确定您想对不同类型的细胞(肺、皮肤、脑)做什么?如果这不是您要找的东西,也许您可​​以发布一张预期输出应该是什么样子的图。

下图中,内环为正常细胞,外环为癌细胞。我在这里的回答受益于这篇文章

## Make the data
tib <- tibble::tribble(
  ~Gene,    ~Lung_Normal, ~Lung_Cancer, ~Skin_Normal, ~Skin_Cancer, ~Brain_Normal,    ~Brain_Cancer,
"Gene_1", TRUE    , TRUE    , TRUE    , TRUE    , TRUE    , TRUE,
"Gene_2",   TRUE,     TRUE,     TRUE,     TRUE,     TRUE,     TRUE, 
"Gene_3", FALSE   , TRUE    , FALSE   , FALSE   , FALSE   , FALSE,
"Gene_4",   FALSE,    FALSE,    FALSE,    FALSE,    FALSE,    FALSE, 
"Gene_5", FALSE   , TRUE    , FALSE   , FALSE   , FALSE   , TRUE,
"Gene_6",   FALSE,    FALSE,    TRUE,     TRUE,     TRUE,     TRUE, 
"Gene_7", FALSE   , FALSE   , FALSE   , TRUE    , FALSE   , FALSE,
"Gene_8",   FALSE,    FALSE,    FALSE,    TRUE,     FALSE,    TRUE, 
"Gene_9", FALSE   , TRUE    , FALSE   , FALSE   , FALSE   , FALSE,
"Gene_10",  FALSE,    FALSE,    FALSE,    TRUE,     FALSE,    TRUE)

library(tidyr)
library(dplyr)

## Re-arrange into long format
tib <- tib %>% 
  pivot_longer(cols=-Gene, names_pattern="(.*)_(.*)", names_to=c("type", ".value")) %>%  
  pivot_longer(c(Normal, Cancer), names_to = "diag", values_to="val") %>% 
  # code colors as the gene if it's mutated, otherwise Unmutated
  mutate(f = case_when(val ~ Gene, TRUE ~ "Unmutated")) %>% 
  group_by(Gene, f, diag) %>% 
  summarise(s = n()) %>% 
  mutate(diag = factor(diag, levels=c("Normal", "Cancer")), 
         f = factor(f, levels=c(paste("Gene", c(1,2,6,3,5,7,8,9,10,4), sep="_"), "Unmutated"))) 

library(ggplot2)
library(RColorBrewer)
ggplot(tib, aes(x=diag, 
                y = s, 
                fill=f)) + 
  geom_bar(stat="identity") + 
  coord_polar("y") + 
  theme_void() + 
  scale_fill_manual(values=c(brewer.pal(9, "Paired"), "gray75")) + 
  labs(fill = "Mutations")
Run Code Online (Sandbox Code Playgroud)

在此处输入图片说明


编辑

这就是艾伦建议的数据的样子。这种方法不能很好地缩放,因为需要有很多颜色会降低绘图的可读性。

df <- structure(list(genes = c("Gene1", "Gene2", "Gene3", "Gene4", 
"Gene5", "Gene6", "Gene7", "Gene8", "Gene9", "Gene10", "Gene11", 
"Gene12", "Gene13", "Gene14", "Gene15", "Gene16", "Gene17", "Gene18", 
"Gene19", "Gene20", "Gene21", "Gene22", "Gene23", "Gene24", "Gene25", 
"Gene26", "Gene27", "Gene28", "Gene29", "Gene30", "Gene31", "Gene32", 
"Gene33", "Gene34", "Gene35", "Gene36", "Gene37", "Gene38", "Gene39", 
"Gene40"), bone_cancer = c(FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, 
TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, 
FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE), bone_normal = c(FALSE, 
FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, 
FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, 
FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, 
TRUE, FALSE, TRUE), brain_cancer = c(TRUE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, 
FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE), brain_normal = c(FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, 
FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, 
TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE), breast_cancer = c(FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, 
TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, 
FALSE, FALSE, TRUE, FALSE, FALSE, FALSE), breast_normal = c(TRUE, 
FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, 
TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, 
FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, 
FALSE), colon_cancer = c(FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, 
TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, TRUE, FALSE), colon_normal = c(FALSE, 
TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, 
FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, 
TRUE, TRUE, FALSE), kidney_cancer = c(FALSE, FALSE, FALSE, FALSE, 
                              FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, 
                              TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, 
                              FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
                              FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE), 
kidney_normal = c(FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, 
FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, 
TRUE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, 
TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, 
TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE), liver_cancer = c(FALSE, 
FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, 
FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, 
FALSE, FALSE, FALSE), liver_normal = c(TRUE, FALSE, FALSE, 
FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, 
TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE, 
TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, 
FALSE), lung_cancer = c(TRUE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, 
TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), 
lung_normal = c(FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, 
TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, 
FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), prostate_cancer = c(TRUE, 
FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
TRUE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, TRUE, 
FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
TRUE, FALSE, TRUE), prostate_normal = c(TRUE, FALSE, FALSE, 
FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, 
FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, TRUE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE), skin_cancer = c(FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, 
TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, 
FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, FALSE, FALSE), skin_normal = c(TRUE, 
FALSE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, TRUE, 
FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, 
TRUE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, 
TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, 
FALSE, FALSE, FALSE), thyroid_cancer = c(FALSE, FALSE, FALSE, 
FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE, 
FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, 
FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, 
FALSE), thyroid_normal = c(FALSE, FALSE, TRUE, FALSE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, 
FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, 
FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE)), 
class = "data.frame", row.names = c(NA, 40L))
names(df)[1] <- "Gene"
tib <- df %>% 
  pivot_longer(cols=-Gene, names_pattern="(.*)_(.*)", names_to=c("type", ".value")) %>%  
  pivot_longer(c(normal, cancer), names_to = "diag", values_to="val") %>% 
  # code colors as the gene if it's mutated, otherwise Unmutated
  mutate(f = case_when(val ~ Gene, TRUE ~ "Unmutated")) %>% 
  group_by(Gene, f, diag) %>% 
  summarise(s = n()) %>% 
  ungroup() %>% 
  group_by(Gene) %>% 
  mutate(diag = factor(diag, levels=c("normal", "cancer")))
         

levs <- tib %>% 
  dplyr::select(f, s) %>% 
  summarise(pct_mutated = sum(s*(f!= "Unmutated"))/sum(s)) %>% 
  arrange(-pct_mutated)  %>% 
  dplyr::select(Gene) %>% 
  pull()


tib<- tib %>% 
  mutate(f = factor(f, levels=c(levs, "Unmutated")))



library(ggplot2)
library(RColorBrewer)
ggplot(tib, aes(x=diag, 
                y = s, 
                fill=f)) + 
  geom_bar(stat="identity") + 
  coord_polar("y") + 
  theme_void() + 
  scale_fill_manual(values=c(rainbow(length(levels(tib$f))-1), "gray75")) + 
  labs(fill = "Mutations")
Run Code Online (Sandbox Code Playgroud)

在此处输入图片说明