使用非常有用的mlr3 书中的示例,我尝试简单地返回堆叠模型输出的平均分数。有人可以解释一下如何使用 mlr3 执行此操作吗?我尝试过使用LearnerClassifAvg$new( id = "classif.avg")和po("classifavg"),但不确定我是否正确应用了这些,谢谢
例子:
library("magrittr")
library("mlr3learners") # for classif.glmnet
task = mlr_tasks$get("iris")
train.idx = sample(seq_len(task$nrow), 120)
test.idx = setdiff(seq_len(task$nrow), train.idx)
rprt = lrn("classif.rpart", predict_type = "prob")
glmn = lrn("classif.glmnet", predict_type = "prob")
# Create Learner CV Operators
lrn_0 = PipeOpLearnerCV$new(rprt, id = "rpart_cv_1")
lrn_0$param_set$values$maxdepth = 5L
lrn_1 = PipeOpPCA$new(id = "pca1") %>>% PipeOpLearnerCV$new(rprt, id = "rpart_cv_2")
lrn_1$param_set$values$rpart_cv_2.maxdepth = 1L
lrn_2 = PipeOpPCA$new(id = "pca2") %>>% PipeOpLearnerCV$new(glmn)
# Union them with a PipeOpNULL to keep original features
level_0 = gunion(list(lrn_0, lrn_1,lrn_2, PipeOpNOP$new(id = "NOP1")))
# Cbind the output 3 times, train 2 learners but also keep level
# 0 predictions
level_1 = level_0 %>>%
PipeOpFeatureUnion$new(4) %>>%
PipeOpCopy$new(3) %>>%
gunion(list(
PipeOpLearnerCV$new(rprt, id = "rpart_cv_l1"),
PipeOpLearnerCV$new(glmn, id = "glmnt_cv_l1"),
PipeOpNOP$new(id = "NOP_l1")
))
level_1$plot(html = FALSE)
level_2 <- level_1 %>>%
PipeOpFeatureUnion$new(3, id = "u2") %>>%
LearnerClassifAvg$new( id = "classif.avg")
level_2$plot(html = FALSE)
lrn = GraphLearner$new(level_2)
lrn$
train(task, train.idx)$
predict(task, test.idx)$
score()
## returns: Error: Trying to predict response, but incoming data has no factors
Run Code Online (Sandbox Code Playgroud)
如果我们不将特征传递给classif.avg( PipeOpNOP),我们仍然会遇到相同的错误:
Error: Trying to predict response, but incoming data has no factors\nRun Code Online (Sandbox Code Playgroud)\nError: Trying to predict response, but incoming data has no factors\nRun Code Online (Sandbox Code Playgroud)\n
library("magrittr")\nlibrary("mlr3learners") # for classif.glmnet\nlibrary("mlr3verse") #for LearnerClassifAvg\nlibrary("mlr3pipelines") # for pipelines\n\ntask = mlr_tasks$get("iris")\ntrain.idx = sample(seq_len(task$nrow), 120)\ntest.idx = setdiff(seq_len(task$nrow), train.idx)\n\nrprt = lrn("classif.rpart", predict_type = "prob")\nglmn = lrn("classif.glmnet", predict_type = "prob")\n\n# Create Learner CV Operators\nlrn_0 = PipeOpLearnerCV$new(rprt, id = "rpart_cv_1")\nlrn_0$param_set$values$maxdepth = 5L\nlrn_1 = PipeOpPCA$new(id = "pca1") %>>% PipeOpLearnerCV$new(rprt, id = "rpart_cv_2")\nlrn_1$param_set$values$rpart_cv_2.maxdepth = 1L\nlrn_2 = PipeOpPCA$new(id = "pca2") %>>% PipeOpLearnerCV$new(glmn)\n\n# Union them with a PipeOpNULL to keep original features\nlevel_0 = gunion(list(lrn_0, lrn_1,lrn_2, PipeOpNOP$new(id = "NOP1")))\n\n# Cbind the output 3 times, train 2 learners but also keep level\n# 0 predictions\nlevel_1 = level_0 %>>%\n PipeOpFeatureUnion$new(4) %>>%\n PipeOpCopy$new(2) %>>%\n gunion(list(\n PipeOpLearnerCV$new(rprt, id = "rpart_cv_l1"),\n PipeOpLearnerCV$new(glmn, id = "glmnt_cv_l1")\n # PipeOpNOP$new(id = "NOP_l1") #leave out features here\n ))\n\n\nlevel_2 <- level_1 %>>%\n PipeOpFeatureUnion$new(2, id = "u2") %>>%\n LearnerClassifAvg$new( id = "classif.avg")\n\nlevel_2$plot(html = FALSE)\nRun Code Online (Sandbox Code Playgroud)\n由reprex 包(v1.0.0)创建于 2021-03-27
\n可以通过设置学习器的正确预测类型来缓解此错误:
\nlrn_avg <- LearnerClassifAvg$new( id = "classif.avg")\nlrn_avg$predict_type ="prob"\nRun Code Online (Sandbox Code Playgroud)\n在此处检查错误消息:https ://github.com/cran/mlr3pipelines/blob/master/R/LearnerAvg.R
\nif (all(fcts) != (self$predict_type == "response")) {\n stopf("Trying to predict %s, but incoming data has %sfactors", self$predict_type, if (all(fcts)) "only " else "no "\nRun Code Online (Sandbox Code Playgroud)\n使用更简单的整体演示解决方案
\n\nlrn = GraphLearner$new(level_2)\n\n\nlrn$\n train(task, train.idx)$\n predict(task, test.idx)$\n score()\n#> INFO [20:42:55.490] [mlr3] Applying learner \'classif.rpart\' on task \'iris\' (iter 2/3) \n#> INFO [20:42:55.557] [mlr3] Applying learner \'classif.rpart\' on task \'iris\' (iter 1/3) \n#> INFO [20:42:55.591] [mlr3] Applying learner \'classif.rpart\' on task \'iris\' (iter 3/3) \n#> INFO [20:42:55.810] [mlr3] Applying learner \'classif.rpart\' on task \'iris\' (iter 3/3) \n#> INFO [20:42:55.849] [mlr3] Applying learner \'classif.rpart\' on task \'iris\' (iter 2/3) \n#> INFO [20:42:55.901] [mlr3] Applying learner \'classif.rpart\' on task \'iris\' (iter 1/3) \n#> INFO [20:42:56.188] [mlr3] Applying learner \'classif.glmnet\' on task \'iris\' (iter 3/3) \n#> INFO [20:42:56.299] [mlr3] Applying learner \'classif.glmnet\' on task \'iris\' (iter 1/3) \n#> INFO [20:42:56.374] [mlr3] Applying learner \'classif.glmnet\' on task \'iris\' (iter 2/3) \n#> INFO [20:42:56.634] [mlr3] Applying learner \'classif.rpart\' on task \'iris\' (iter 1/3) \n#> INFO [20:42:56.699] [mlr3] Applying learner \'classif.rpart\' on task \'iris\' (iter 2/3) \n#> INFO [20:42:56.765] [mlr3] Applying learner \'classif.rpart\' on task \'iris\' (iter 3/3) \n#> INFO [20:42:57.065] [mlr3] Applying learner \'classif.glmnet\' on task \'iris\' (iter 2/3) \n#> INFO [20:42:57.177] [mlr3] Applying learner \'classif.glmnet\' on task \'iris\' (iter 1/3) \n#> INFO [20:42:57.308] [mlr3] Applying learner \'classif.glmnet\' on task \'iris\' (iter 3/3)\n#> Error: Trying to predict response, but incoming data has no factors\nRun Code Online (Sandbox Code Playgroud)\n
lrn_avg <- LearnerClassifAvg$new( id = "classif.avg")\nlrn_avg$predict_type ="prob"\nRun Code Online (Sandbox Code Playgroud)\n由reprex 包(v1.0.0)于 2021-03-28 创建
\n