Tre*_*ney 5 python json dictionary pandas json-normalize
pandas.DataFrame
str
、dict
或list
type。NaN
时处理值的问题。df.dropna().reset_index(drop=True)
str
必须将列中的值转换为dict
类型,使用, 。ast.literal_eval
.json_normalize
import numpy as np
import pandas as pd
from ast import literal_eval
df = pd.DataFrame({'col_str': ['{"a": "46", "b": "3", "c": "12"}', '{"b": "2", "c": "7"}', '{"c": "11"}', np.NaN]})
col_str
0 {"a": "46", "b": "3", "c": "12"}
1 {"b": "2", "c": "7"}
2 {"c": "11"}
3 NaN
type(df.iloc[0, 0])
[out]: str
df.col_str.apply(literal_eval)
Run Code Online (Sandbox Code Playgroud)
错误:
df.col_str.apply(literal_eval) results in ValueError: malformed node or string: nan
Run Code Online (Sandbox Code Playgroud)
dict
,用于pandas.json_normalize
将键转换为列标题,将值转换为行df = pd.DataFrame({'col_dict': [{"a": "46", "b": "3", "c": "12"}, {"b": "2", "c": "7"}, {"c": "11"}, np.NaN]})
col_dict
0 {'a': '46', 'b': '3', 'c': '12'}
1 {'b': '2', 'c': '7'}
2 {'c': '11'}
3 NaN
type(df.iloc[0, 0])
[out]: dict
pd.json_normalize(df.col_dict)
Run Code Online (Sandbox Code Playgroud)
错误:
pd.json_normalize(df.col_dict) results in AttributeError: 'float' object has no attribute 'items'
Run Code Online (Sandbox Code Playgroud)
str
,内部有dict
一个list
.literal_eval
,因为爆炸不适用于str
类型dicts
将行分开df = pd.DataFrame({'col_str': ['[{"a": "46", "b": "3", "c": "12"}, {"b": "2", "c": "7"}]', '[{"b": "2", "c": "7"}, {"c": "11"}]', np.nan]})
col_str
0 [{"a": "46", "b": "3", "c": "12"}, {"b": "2", "c": "7"}]
1 [{"b": "2", "c": "7"}, {"c": "11"}]
2 NaN
type(df.iloc[0, 0])
[out]: str
df.col_str.apply(literal_eval)
Run Code Online (Sandbox Code Playgroud)
错误:
df.col_str.apply(literal_eval) results in ValueError: malformed node or string: nan
Run Code Online (Sandbox Code Playgroud)
Tre*_*ney 12
df = df.dropna().reset_index(drop=True)
python 3.10
,pandas 1.4.3
str
类型,因此用'{}'
(a str
)填充import numpy as np
import pandas as pd
from ast import literal_eval
df = pd.DataFrame({'col_str': ['{"a": "46", "b": "3", "c": "12"}', '{"b": "2", "c": "7"}', '{"c": "11"}', np.NaN]})
col_str
0 {"a": "46", "b": "3", "c": "12"}
1 {"b": "2", "c": "7"}
2 {"c": "11"}
3 NaN
type(df.iloc[0, 0])
[out]: str
# fillna
df.col_str = df.col_str.fillna('{}')
# convert the column to dicts
df.col_str = df.col_str.apply(literal_eval)
# use json_normalize
df = df.join(pd.json_normalize(df.pop('col_str')))
# display(df)
a b c
0 46 3 12
1 NaN 2 7
2 NaN NaN 11
3 NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
至少pandas 1.3.4
,pd.json_normalize(df.col_dict)
至少对于这个简单的例子来说,工作没有问题。
dict
类型,因此用{}
(而不是str
)填充fillna({})
不起作用df = pd.DataFrame({'col_dict': [{"a": "46", "b": "3", "c": "12"}, {"b": "2", "c": "7"}, {"c": "11"}, np.NaN]})
col_dict
0 {'a': '46', 'b': '3', 'c': '12'}
1 {'b': '2', 'c': '7'}
2 {'c': '11'}
3 NaN
type(df.iloc[0, 0])
[out]: dict
# fillna
df.col_dict = df.col_dict.fillna({i: {} for i in df.index})
# use json_normalize
df = df.join(pd.json_normalize(df.pop('col_dict')))
# display(df)
a b c
0 46 3 12
1 NaN 2 7
2 NaN NaN 11
3 NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
NaNs
a )'[]'
str
literal_eval
可以工作了.explode
可以在列上使用,将dict
值分隔到行中NaNs
需要填写{}
(不是str
)lists
对于列属于dicts
非类型的情况str
,请跳至.explode
。df = pd.DataFrame({'col_str': ['[{"a": "46", "b": "3", "c": "12"}, {"b": "2", "c": "7"}]', '[{"b": "2", "c": "7"}, {"c": "11"}]', np.nan]})
col_str
0 [{"a": "46", "b": "3", "c": "12"}, {"b": "2", "c": "7"}]
1 [{"b": "2", "c": "7"}, {"c": "11"}]
2 NaN
type(df.iloc[0, 0])
[out]: str
# fillna
df.col_str = df.col_str.fillna('[]')
# literal_eval
df.col_str = df.col_str.apply(literal_eval)
# explode
df = df.explode('col_str', ignore_index=True)
# fillna again
df.col_str = df.col_str.fillna({i: {} for i in df.index})
# use json_normalize
df = df.join(pd.json_normalize(df.pop('col_str')))
# display(df)
a b c
0 46 3 12
1 NaN 2 7
2 NaN 2 7
3 NaN NaN 11
4 NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)