lda*_*cey 7 python dictionary pandas json-normalize
我用来pd.json_normalize将"sections"这些数据中的字段展平为行。除了空列表的行之外,它工作正常"sections"。
该 ID 被完全忽略,并且从最终的扁平化数据框中丢失。我需要确保数据中的每个唯一 ID 至少有一行(某些 ID 可能有很多行,每个唯一 ID、每个唯一 、section_id、question_id以及answer_id当我在数据中取消嵌套更多字段时最多可以有一行):
{'_id': '5f48f708fe22ca4d15fb3b55',
'created_at': '2020-08-28T12:22:32Z',
'sections': []}]
Run Code Online (Sandbox Code Playgroud)
样本数据:
sample = [{'_id': '5f48bee4c54cf6b5e8048274',
'created_at': '2020-08-28T08:23:00Z',
'sections': [{'comment': '',
'type_fail': None,
'answers': [{'comment': 'stuff',
'feedback': [],
'value': 10.0,
'answer_type': 'default',
'question_id': '5e59599c68369c24069630fd',
'answer_id': '5e595a7c3fbb70448b6ff935'},
{'comment': 'stuff',
'feedback': [],
'value': 10.0,
'answer_type': 'default',
'question_id': '5e598939cedcaf5b865ef99a',
'answer_id': '5e598939cedcaf5b865ef998'}],
'score': 20.0,
'passed': True,
'_id': '5e59599c68369c24069630fe',
'custom_fields': []},
{'comment': '',
'type_fail': None,
'answers': [{'comment': '',
'feedback': [],
'value': None,
'answer_type': 'not_applicable',
'question_id': '5e59894f68369c2398eb68a8',
'answer_id': '5eaad4e5b513aed9a3c996a5'},
{'comment': '',
'feedback': [],
'value': None,
'answer_type': 'not_applicable',
'question_id': '5e598967cedcaf5b865efe3e',
'answer_id': '5eaad4ece3f1e0794372f8b2'},
{'comment': "stuff",
'feedback': [],
'value': 0.0,
'answer_type': 'default',
'question_id': '5e598976cedcaf5b865effd1',
'answer_id': '5e598976cedcaf5b865effd3'}],
'score': 0.0,
'passed': True,
'_id': '5e59894f68369c2398eb68a9',
'custom_fields': []}]},
{'_id': '5f48f708fe22ca4d15fb3b55',
'created_at': '2020-08-28T12:22:32Z',
'sections': []}]
Run Code Online (Sandbox Code Playgroud)
测试:
df = pd.json_normalize(sample)
df2 = pd.json_normalize(df.to_dict(orient="records"), meta=["_id", "created_at"], record_path="sections", record_prefix="section_")
Run Code Online (Sandbox Code Playgroud)
此时,我现在缺少一行 ID“5f48f708fe22ca4d15fb3b55”,我仍然需要它。
df3 = pd.json_normalize(df2.to_dict(orient="records"), meta=["_id", "created_at", "section__id", "section_score", "section_passed", "section_type_fail", "section_comment"], record_path="section_answers", record_prefix="")
Run Code Online (Sandbox Code Playgroud)
我可以以某种方式更改此设置以确保每个 ID 至少获得一行吗?我正在处理数百万条记录,并且不想稍后意识到我的最终数据中缺少一些 ID。我能想到的唯一解决方案是标准化每个数据帧,然后再次将其连接到原始数据帧。
dictsections为空list,则填充[{'answers': [{}]}]for i, d in enumerate(sample):
if not d['sections']:
sample[i]['sections'] = [{'answers': [{}]}]
df = pd.json_normalize(sample)
df2 = pd.json_normalize(df.to_dict(orient="records"), meta=["_id", "created_at"], record_path="sections", record_prefix="section_")
# display(df2)
section_comment section_type_fail section_answers section_score section_passed section__id section_custom_fields _id created_at
0 NaN [{'comment': 'stuff', 'feedback': [], 'value': 10.0, 'answer_type': 'default', 'question_id': '5e59599c68369c24069630fd', 'answer_id': '5e595a7c3fbb70448b6ff935'}, {'comment': 'stuff', 'feedback': [], 'value': 10.0, 'answer_type': 'default', 'question_id': '5e598939cedcaf5b865ef99a', 'answer_id': '5e598939cedcaf5b865ef998'}] 20.0 True 5e59599c68369c24069630fe [] 5f48bee4c54cf6b5e8048274 2020-08-28T08:23:00Z
1 NaN [{'comment': '', 'feedback': [], 'value': None, 'answer_type': 'not_applicable', 'question_id': '5e59894f68369c2398eb68a8', 'answer_id': '5eaad4e5b513aed9a3c996a5'}, {'comment': '', 'feedback': [], 'value': None, 'answer_type': 'not_applicable', 'question_id': '5e598967cedcaf5b865efe3e', 'answer_id': '5eaad4ece3f1e0794372f8b2'}, {'comment': 'stuff', 'feedback': [], 'value': 0.0, 'answer_type': 'default', 'question_id': '5e598976cedcaf5b865effd1', 'answer_id': '5e598976cedcaf5b865effd3'}] 0.0 True 5e59894f68369c2398eb68a9 [] 5f48bee4c54cf6b5e8048274 2020-08-28T08:23:00Z
2 NaN NaN [{}] NaN NaN NaN NaN 5f48f708fe22ca4d15fb3b55 2020-08-28T12:22:32Z
df3 = pd.json_normalize(df2.to_dict(orient="records"), meta=["_id", "created_at", "section__id", "section_score", "section_passed", "section_type_fail", "section_comment"], record_path="section_answers", record_prefix="")
# display(df3)
comment feedback value answer_type question_id answer_id _id created_at section__id section_score section_passed section_type_fail section_comment
0 stuff [] 10.0 default 5e59599c68369c24069630fd 5e595a7c3fbb70448b6ff935 5f48bee4c54cf6b5e8048274 2020-08-28T08:23:00Z 5e59599c68369c24069630fe 20 True NaN
1 stuff [] 10.0 default 5e598939cedcaf5b865ef99a 5e598939cedcaf5b865ef998 5f48bee4c54cf6b5e8048274 2020-08-28T08:23:00Z 5e59599c68369c24069630fe 20 True NaN
2 [] NaN not_applicable 5e59894f68369c2398eb68a8 5eaad4e5b513aed9a3c996a5 5f48bee4c54cf6b5e8048274 2020-08-28T08:23:00Z 5e59894f68369c2398eb68a9 0 True NaN
3 [] NaN not_applicable 5e598967cedcaf5b865efe3e 5eaad4ece3f1e0794372f8b2 5f48bee4c54cf6b5e8048274 2020-08-28T08:23:00Z 5e59894f68369c2398eb68a9 0 True NaN
4 stuff [] 0.0 default 5e598976cedcaf5b865effd1 5e598976cedcaf5b865effd3 5f48bee4c54cf6b5e8048274 2020-08-28T08:23:00Z 5e59894f68369c2398eb68a9 0 True NaN
5 NaN NaN NaN NaN NaN NaN 5f48f708fe22ca4d15fb3b55 2020-08-28T12:22:32Z NaN NaN NaN NaN NaN
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
6851 次 |
| 最近记录: |