Fra*_*Boi 4 python keras tensorflow dropout transfer-learning
考虑迁移学习,以便在 keras/tensorflow 中使用预训练模型。对于每个旧层,trained参数设置false为使其权重在训练期间不会更新,而最后一层已被新层替换,并且必须对这些层进行训练。特别是添加了两个带有神经元和 relu 激活函数的全连接隐藏层512。1024在这些层之后,使用 Dropout 层rate 0.2。这意味着在每个训练时期,20%神经元都会被随机丢弃。
该 dropout 层影响哪些层?它是否会影响所有网络,包括已layer.trainable=false设置的预训练层,还是仅影响新添加的层?或者它只影响前一层(即具有1024神经元的一层)?
换句话说,在每个时期因 dropout 而关闭的神经元属于哪一层?
import os
from tensorflow.keras import layers
from tensorflow.keras import Model
from tensorflow.keras.applications.inception_v3 import InceptionV3
local_weights_file = 'weights.h5'
pre_trained_model = InceptionV3(input_shape = (150, 150, 3),
include_top = False,
weights = None)
pre_trained_model.load_weights(local_weights_file)
for layer in pre_trained_model.layers:
layer.trainable = False
# pre_trained_model.summary()
last_layer = pre_trained_model.get_layer('mixed7')
last_output = last_layer.output
# Flatten the output layer to 1 dimension
x = layers.Flatten()(last_output)
# Add two fully connected layers with 512 and 1,024 hidden units and ReLU activation
x = layers.Dense(512, activation='relu')(x)
x = layers.Dense(1024, activation='relu')(x)
# Add a dropout rate of 0.2
x = layers.Dropout(0.2)(x)
# Add a final sigmoid layer for classification
x = layers.Dense (1, activation='sigmoid')(x)
model = Model( pre_trained_model.input, x)
model.compile(optimizer = RMSprop(lr=0.0001),
loss = 'binary_crossentropy',
metrics = ['accuracy'])
Run Code Online (Sandbox Code Playgroud)
dropout层会影响前一层的输出。
如果我们查看代码的特定部分:
x = layers.Dense(1024, activation='relu')(x)
# Add a dropout rate of 0.2
x = layers.Dropout(0.2)(x)
# Add a final sigmoid layer for classification
x = layers.Dense (1, activation='sigmoid')(x)
Run Code Online (Sandbox Code Playgroud)
在您的情况下,在传递到最后一层之前,由 定义的层的 20% 输出x = layers.Dense(1024, activation='relu')(x)将被随机丢弃Dense。