viv*_*vek 2 python scikit-learn sentence-similarity tensorflow
建议/参考链接/代码表示赞赏。
我有一个超过 1500 行的数据。每一行都有一个句子。我试图找出在所有句子中找到最相似句子的最佳方法。
我试过的
我尝试过 K-mean 算法,它将相似的句子分组在一个集群中。但是我发现了一个缺点,我必须通过K来创建一个集群。很难猜测K。我尝试了 elbo 方法来猜测集群,但将所有组合在一起是不够的。在这种方法中,我将所有数据分组。我正在寻找与 0.90% 以上的数据类似的数据,应返回 ID。
我尝试了余弦相似度,其中我用来TfidfVectorizer
创建矩阵,然后传入余弦相似度。即使这种方法也不能正常工作。
我在寻找什么
我想要一种方法,我可以在其中传递阈值示例 0.90 的所有行中的数据,这些数据应该作为结果返回。
Data Sample
ID | DESCRIPTION
-----------------------------
10 | Cancel ASN WMS Cancel ASN
11 | MAXPREDO Validation is corect
12 | Move to QC
13 | Cancel ASN WMS Cancel ASN
14 | MAXPREDO Validation is right
15 | Verify files are sent every hours for this interface from Optima
16 | MAXPREDO Validation are correct
17 | Move to QC
18 | Verify files are not sent
Run Code Online (Sandbox Code Playgroud)
预期结果
上面的数据相似度高达 0.90% 应该得到带有ID的结果
ID | DESCRIPTION
-----------------------------
10 | Cancel ASN WMS Cancel ASN
13 | Cancel ASN WMS Cancel ASN
11 | MAXPREDO Validation is corect # even spelling is not correct
14 | MAXPREDO Validation is right
16 | MAXPREDO Validation are correct
12 | Move to QC
17 | Move to QC
Run Code Online (Sandbox Code Playgroud)
为什么它对余弦相似度和 TFIDF 向量化器不起作用?
我试过了,它适用于以下代码:
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
df = pd.DataFrame(columns=["ID","DESCRIPTION"], data=np.matrix([[10,"Cancel ASN WMS Cancel ASN"],
[11,"MAXPREDO Validation is corect"],
[12,"Move to QC"],
[13,"Cancel ASN WMS Cancel ASN"],
[14,"MAXPREDO Validation is right"],
[15,"Verify files are sent every hours for this interface from Optima"],
[16,"MAXPREDO Validation are correct"],
[17,"Move to QC"],
[18,"Verify files are not sent"]
]))
corpus = list(df["DESCRIPTION"].values)
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(corpus)
threshold = 0.4
for x in range(0,X.shape[0]):
for y in range(x,X.shape[0]):
if(x!=y):
if(cosine_similarity(X[x],X[y])>threshold):
print(df["ID"][x],":",corpus[x])
print(df["ID"][y],":",corpus[y])
print("Cosine similarity:",cosine_similarity(X[x],X[y]))
print()
Run Code Online (Sandbox Code Playgroud)
阈值也可以调整,但阈值为 0.9 时不会产生您想要的结果。
阈值为 0.4 的输出为:
10 : Cancel ASN WMS Cancel ASN
13 : Cancel ASN WMS Cancel ASN
Cosine similarity: [[1.]]
11 : MAXPREDO Validation is corect
14 : MAXPREDO Validation is right
Cosine similarity: [[0.64183024]]
12 : Move to QC
17 : Move to QC
Cosine similarity: [[1.]]
15 : Verify files are sent every hours for this interface from Optima
18 : Verify files are not sent
Cosine similarity: [[0.44897995]]
Run Code Online (Sandbox Code Playgroud)
阈值为 0.39 时,所有预期的句子都是输出中的特征,但也可以找到带有索引 [15,18] 的附加对:
10 : Cancel ASN WMS Cancel ASN
13 : Cancel ASN WMS Cancel ASN
Cosine similarity: [[1.]]
11 : MAXPREDO Validation is corect
14 : MAXPREDO Validation is right
Cosine similarity: [[0.64183024]]
11 : MAXPREDO Validation is corect
16 : MAXPREDO Validation are correct
Cosine similarity: [[0.39895808]]
12 : Move to QC
17 : Move to QC
Cosine similarity: [[1.]]
14 : MAXPREDO Validation is right
16 : MAXPREDO Validation are correct
Cosine similarity: [[0.39895808]]
15 : Verify files are sent every hours for this interface from Optima
18 : Verify files are not sent
Cosine similarity: [[0.44897995]]
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
2504 次 |
最近记录: |