Ken*_*Lee 5 python keras tensorflow
您好,我试图根据以下代码运行模型拟合,但不知何故它一直说
类型错误:“NoneType”对象不可调用。不确定我哪一部分做错了。这是
我的优化培训过程的一部分。我在这里迷失了...运行此类 model.fit 是否有最低要求?
请在这件事上给予我帮助!
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import datasets
(train_x, train_y), (test_x, test_y) = datasets.mnist.load_data()
inputs = layers.Input((28, 28, 1))
net = layers.Conv2D(32, (3, 3), padding ='SAME')(inputs)
net = layers.Activation('relu')(net)
net = layers.Conv2D(32, (3, 3), padding ='SAME')(net)
net = layers.Activation('relu')(net)
net = layers.MaxPooling2D(pool_size=(2, 2))(net)
net = layers.Dropout(0.25)(net)
net = layers.Conv2D(64, (3, 3), padding ='SAME')(net)
net = layers.Activation('relu')(net)
net = layers.Conv2D(64, (3, 3), padding ='SAME')(net)
net = layers.Activation('relu')(net)
net = layers.MaxPooling2D(pool_size=(2, 2))(net)
net = layers.Dropout(0.25)(net)
net = layers.Flatten()(net)
net = layers.Dense(512)(net)
net = layers.Activation('relu')(net)
net = layers.Dropout(0.5)(net)
net = layers.Dense(10)(net)
net = layers.Activation('softmax')(net)
model = tf.keras.Model(inputs=inputs, outputs=net, name='Basic_CNN')
loss_fun = tf.keras.losses.sparse_categorical_crossentropy
metrics = tf.keras.metrics.Accuracy()
optm = tf.keras.optimizers.Adam()
model.compile(optimizer=tf.keras.optimizers.Adam(),
loss='sparse_categorical_crossentropy',
metrics=[tf.keras.metrics.Accuracy()])
train_x.shape, train_y.shape
test_x.shape, test_y.shape
import numpy as np
np.expand_dims(train_x, -1).shape
tf.expand_dims(train_x, -1).shape
train_x = train_x[..., tf.newaxis]
test_x = test_x[..., tf.newaxis]
train_x.shape
np.min(train_x), np.max(train_x)
train_x = train_x / 255.
test_x = test_x / 255.
np.min(train_x), np.max(train_x)
num_epochs = 1
batch_size = 32
model.fit(train_x, train_y,
batch_size=batch_size,
shuffle=True,
epochs=num_epochs)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-20-870033ef5c40> in <module>
2 batch_size=batch_size,
3 shuffle=True,
----> 4 epochs=num_epochs)
~/opt/anaconda3/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
106 def _method_wrapper(self, *args, **kwargs):
107 if not self._in_multi_worker_mode(): # pylint: disable=protected-access
--> 108 return method(self, *args, **kwargs)
109
110 # Running inside `run_distribute_coordinator` already.
~/opt/anaconda3/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
1096 batch_size=batch_size):
1097 callbacks.on_train_batch_begin(step)
-> 1098 tmp_logs = train_function(iterator)
1099 if data_handler.should_sync:
1100 context.async_wait()
~/opt/anaconda3/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
778 else:
779 compiler = "nonXla"
--> 780 result = self._call(*args, **kwds)
781
782 new_tracing_count = self._get_tracing_count()
~/opt/anaconda3/lib/python3.6/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
805 # In this case we have created variables on the first call, so we run the
806 # defunned version which is guaranteed to never create variables.
--> 807 return self._stateless_fn(*args, **kwds) # pylint: disable=not-callable
808 elif self._stateful_fn is not None:
809 # Release the lock early so that multiple threads can perform the call
TypeError: 'NoneType' object is not callable
Run Code Online (Sandbox Code Playgroud)
小智 3
你必须做两件事。
首先,您必须将损失更改为:categorical_crossentropy。
其次,您需要train_y并且test_y必须进行单热编码。这意味着它们必须具有维度(number_of_samples, 10),其中10表示类的数量。添加此后model.compile():
num_classes = 10 #number of classes, here is 10 (0,1,...,9)
train_y = keras.utils.to_categorical(train_y, num_classes)
test_y = keras.utils.to_categorical(test_y, num_classes)
Run Code Online (Sandbox Code Playgroud)
最后,我想说的是,你应该改变轮数和批量大小以获得更好的结果。例如epochs count = 12和batch size = 128
| 归档时间: |
|
| 查看次数: |
12384 次 |
| 最近记录: |