给定一串数字,我必须使用Perl尽可能快地对所有数字求和.
我的第一个实现用unpack()解包数字,然后用List :: Utils的sum()对数字列表求和.它的速度非常快,但是这个任务有更快的打包/解包配方吗?
我试着使用pack/unpack组合,并对这两个实现进行了基准测试.二手CPU时间几乎相同; 也许有一些我不知道的快速技巧?
以下是我的基准测试方法:
#!/usr/bin/env perl
use 5.012;
use strict;
use List::Util qw/sum/;
use Benchmark qw/timethese/;
timethese ( 1000000, {
list_util => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = sum( unpack( 'AAAAAAAAA', $CheckDigit ) );
} while ( $CheckDigit > 9 );
},
perl_only => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = unpack( '%16S*', pack( 'S9', unpack( 'AAAAAAAAA', $CheckDigit ) ) );
} while ( $CheckDigit > 9 );
},
} );
Run Code Online (Sandbox Code Playgroud)
unpack不是拆分字符串的最快方法:
#!/usr/bin/env perl
use strict;
use List::Util qw/sum/;
use Benchmark qw/cmpthese/;
cmpthese ( -3, {
list_util => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = sum( unpack( 'AAAAAAAAA', $CheckDigit ) );
} while ( $CheckDigit > 9 );
},
unpack_star => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = sum( unpack( '(A)*', $CheckDigit ) );
} while ( $CheckDigit > 9 );
},
re => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = sum( $CheckDigit =~ /(.)/g );
} while ( $CheckDigit > 9 );
},
split => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = sum( split //, $CheckDigit );
} while ( $CheckDigit > 9 );
},
perl_only => sub {
my $CheckDigit = "999989989";
do {
$CheckDigit = unpack( '%16S*', pack( 'S9', unpack( 'AAAAAAAAA', $CheckDigit ) ) );
} while ( $CheckDigit > 9 );
},
modulo => sub {
my $CheckDigit = "999989989";
$CheckDigit = ($CheckDigit+0) && ($CheckDigit % 9 || 9);
},
} );
Run Code Online (Sandbox Code Playgroud)
生产:
Rate perl_only list_util re unpack_star split modulo
perl_only 89882/s -- -15% -30% -45% -54% -97%
list_util 105601/s 17% -- -17% -35% -45% -97%
re 127656/s 42% 21% -- -21% -34% -96%
unpack_star 162308/s 81% 54% 27% -- -16% -95%
split 193405/s 115% 83% 52% 19% -- -94%
modulo 3055254/s 3299% 2793% 2293% 1782% 1480% --
Run Code Online (Sandbox Code Playgroud)
因此,split如果您必须将字符串拆分为字符,那么看起来是您最好的选择.
但重复求和的数字几乎与采用数字mod 9(如mirod指出)相同.不同之处在于$Digits % 9产生0而不是9.一个修复的公式($Digits-1) % 9 + 1,但是(至少在Perl中)不适用于全零情况(它产生9而不是0).在Perl中运行的表达式是($Digits+0) && ($Digits % 9 || 9).第一个术语处理全零情况,第二个术语处理正常情况,第三个术语处理0到9.
| 归档时间: |
|
| 查看次数: |
399 次 |
| 最近记录: |