use*_*278 4 vectorization julia
我正在使用 Julia 1.0。请考虑以下代码:
using LinearAlgebra
using Distributions
## create random data
const data = rand(Uniform(-1,2), 100000, 2)
function test_function_1(data)
theta = [1 2]
coefs = theta * data[:,1:2]'
res = coefs' .* data[:,1:2]
return sum(res, dims = 1)'
end
function test_function_2(data)
theta = [1 2]
sum_all = zeros(2)
for i = 1:size(data)[1]
sum_all .= sum_all + (theta * data[i,1:2])[1] * data[i,1:2]
end
return sum_all
end
Run Code Online (Sandbox Code Playgroud)
第一次运行后,我计时了
julia> @time test_function_1(data)
0.006292 seconds (16 allocations: 5.341 MiB)
2×1 Adjoint{Float64,Array{Float64,2}}:
150958.47189289227
225224.0374366073
julia> @time test_function_2(data)
0.038112 seconds (500.00 k allocations: 45.777 MiB, 15.61% gc time)
2-element Array{Float64,1}:
150958.4718928927
225224.03743660534
Run Code Online (Sandbox Code Playgroud)
test_function_1在分配和速度方面都显着优越,但test_function_1没有去向量化。我希望test_function_2表现更好。请注意,这两个函数的作用相同。
我有一种预感,因为在test_function_2,我使用sum_all .= sum_all + ...,但我不确定为什么这是一个问题。我可以得到提示吗?
所以首先让我评论一下,如果我想使用循环,我将如何编写您的函数:
function test_function_3(data)
theta = (1, 2)
sum_all = zeros(2)
for row in eachrow(data)
sum_all .+= dot(theta, row) .* row
end
return sum_all
end
Run Code Online (Sandbox Code Playgroud)
接下来,这里是三个选项的基准比较:
julia> @benchmark test_function_1($data)
BenchmarkTools.Trial:
memory estimate: 5.34 MiB
allocs estimate: 16
--------------
minimum time: 1.953 ms (0.00% GC)
median time: 1.986 ms (0.00% GC)
mean time: 2.122 ms (2.29% GC)
maximum time: 4.347 ms (8.00% GC)
--------------
samples: 2356
evals/sample: 1
julia> @benchmark test_function_2($data)
BenchmarkTools.Trial:
memory estimate: 45.78 MiB
allocs estimate: 500002
--------------
minimum time: 16.316 ms (7.44% GC)
median time: 16.597 ms (7.63% GC)
mean time: 16.845 ms (8.01% GC)
maximum time: 34.050 ms (4.45% GC)
--------------
samples: 297
evals/sample: 1
julia> @benchmark test_function_3($data)
BenchmarkTools.Trial:
memory estimate: 96 bytes
allocs estimate: 1
--------------
minimum time: 777.204 ?s (0.00% GC)
median time: 791.458 ?s (0.00% GC)
mean time: 799.505 ?s (0.00% GC)
maximum time: 1.262 ms (0.00% GC)
--------------
samples: 6253
evals/sample: 1
Run Code Online (Sandbox Code Playgroud)
接下来,如果您dot在循环中显式实现,则可以更快一些:
julia> function test_function_4(data)
theta = (1, 2)
sum_all = zeros(2)
for row in eachrow(data)
@inbounds sum_all .+= (theta[1]*row[1]+theta[2]*row[2]) .* row
end
return sum_all
end
test_function_4 (generic function with 1 method)
julia> @benchmark test_function_4($data)
BenchmarkTools.Trial:
memory estimate: 96 bytes
allocs estimate: 1
--------------
minimum time: 502.367 ?s (0.00% GC)
median time: 502.547 ?s (0.00% GC)
mean time: 505.446 ?s (0.00% GC)
maximum time: 806.631 ?s (0.00% GC)
--------------
samples: 9888
evals/sample: 1
Run Code Online (Sandbox Code Playgroud)
要了解差异,让我们看一下您的代码的这一行:
sum_all .= sum_all + (theta * data[i,1:2])[1] * data[i,1:2]
Run Code Online (Sandbox Code Playgroud)
让我们计算一下你在这个表达式中所做的内存分配:
sum_all .=
sum_all
+ # allocation of a new vector as a result of addition
(theta
* # allocation of a new vector as a result of multiplication
data[i,1:2] # allocation of a new vector via getindex
)[1]
* # allocation of a new vector as a result of multiplication
data[i,1:2] # allocation of a new vector via getindex
Run Code Online (Sandbox Code Playgroud)
所以你可以看到在循环的每次迭代中你分配了五次。分配是昂贵的。您可以在基准测试中看到这一点,您在此过程中有 5000002 次分配:
sum_alltheta此外,您执行索引,例如data[i,1:2]执行边界检查,这也是一个很小的成本(但与分配相比是微不足道的)。
现在在函数中test_function_3我使用eachrow(data). 这次我也得到了data矩阵行,但它们作为视图(不是新矩阵)返回,因此循环内不会发生分配。接下来,我dot再次使用一个函数来避免先前由矩阵乘法引起的分配(我已从 a更改theta为 a Tuple,Matrix因为那时dot速度稍快,但这是次要的)。最后我写了um_all .+= dot(theta, row) .* row,在这种情况下,所有操作都被广播,所以 Julia 可以进行广播融合(再次 - 没有分配发生)。
在test_function_4我只是用dot展开循环替换,因为我们知道我们有两个元素来计算点积。实际上,如果您完全展开所有内容并使用@simd它会变得更快:
julia> function test_function_5(data)
theta = (1, 2)
s1 = 0.0
s2 = 0.0
@inbounds @simd for i in axes(data, 1)
r1 = data[i, 1]
r2 = data[i, 2]
mul = theta[1]*r1 + theta[2]*r2
s1 += mul * r1
s2 += mul * r2
end
return [s1, s2]
end
test_function_5 (generic function with 1 method)
julia> @benchmark test_function_5($data)
BenchmarkTools.Trial:
memory estimate: 96 bytes
allocs estimate: 1
--------------
minimum time: 22.721 ?s (0.00% GC)
median time: 23.146 ?s (0.00% GC)
mean time: 24.306 ?s (0.00% GC)
maximum time: 100.109 ?s (0.00% GC)
--------------
samples: 10000
evals/sample: 1
Run Code Online (Sandbox Code Playgroud)
所以你可以看到,这样你的速度比使用test_function_1. 仍然test_function_3相对较快并且它是完全通用的,所以通常我会写一些类似的东西,test_function_3除非我真的需要超快并且知道我的数据的维度是固定的并且很小。