ame*_*ian 2 python split scikit-learn cross-validation k-fold
正如标题所说,我想知道sklearnGroupKFold和GroupShuffleSplit.
两者都针对具有组 ID 的数据进行训练-测试分割,因此组不会在分割中分离。我检查了每个函数的一个训练/测试集,它们看起来都做了很好的分层,但如果有人可以确认所有分割都这样做,那就太好了。
我对两者进行了 10 次分割测试:
gss = GroupShuffleSplit(n_splits=10, train_size=0.8, random_state=42)
for train_idx, test_idx in gss.split(X,y,groups):
print("train:", train_idx, "test:", test_idx)
train: [ 1 2 3 4 5 11 12 13 14 15 16 17 19 20] test: [ 0 6 7 8 9 10 18]
train: [ 1 2 3 4 5 6 7 8 9 10 12 13 14 18 19 20] test: [ 0 11 15 16 17]
train: [ 0 1 3 4 5 6 7 8 9 10 12 13 14 18 19 20] test: [ 2 11 15 16 17]
train: [ 0 2 3 4 11 12 13 14 15 16 17 18 19 20] test: [ 1 5 6 7 8 9 10]
train: [ 0 1 3 4 5 6 7 8 9 10 11 15 16 17 19 20] test: [ 2 12 13 14 18]
train: [ 1 2 3 4 5 6 7 8 9 10 11 15 16 17 18] test: [ 0 12 13 14 19 20]
train: [ 0 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17] test: [ 5 18 19 20]
train: [ 0 1 3 4 6 7 8 9 10 11 15 16 17 18 19 20] test: [ 2 5 12 13 14]
train: [ 0 1 3 4 5 12 13 14 15 16 17 18 19 20] test: [ 2 6 7 8 9 10 11]
train: [ 0 2 3 4 5 11 12 13 14 15 16 17 19 20] test: [ 1 6 7 8 9 10 18]
group_kfold = GroupKFold(n_splits=10)
for train_idx, test_idx in group_kfold.split(X,y,groups):
print("train:", train_idx, "test:", test_idx)
train: [ 0 1 2 3 4 5 11 12 13 14 15 16 17 18 19 20] test: [ 6 7 8 9 10]
train: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 19 20] test: [15 16 17]
train: [ 0 1 2 3 4 5 6 7 8 9 10 11 15 16 17 18 19 20] test: [12 13 14]
train: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18] test: [19 20]
train: [ 0 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20] test: [3 4]
train: [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20] test: [ 0 18]
train: [ 0 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20] test: [11]
train: [ 0 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20] test: [5]
train: [ 0 1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20] test: [2]
train: [ 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20] test: [1]
Run Code Online (Sandbox Code Playgroud)
非分组版本的文档使这一点更加清晰。KFold 分割成 k 个折叠,然后将它们集中到不同的训练/测试分割中,而 ShuffleSplit 重复地直接进行训练/测试分割。特别是,每个样本在 KFold 中只测试一次,但在 ShuffleSplit 中可以测试零次或多次。
| 归档时间: |
|
| 查看次数: |
2570 次 |
| 最近记录: |