Abr*_*ain 2 machine-learning random-forest scikit-learn
所以,我一直在做我的第一个 ML 项目,作为其中的一部分,我一直在尝试来自 sci-kit learn 的各种模型,我为随机森林模型编写了这段代码:
#Random Forest
reg = RandomForestRegressor(random_state=0, criterion = 'mse')
#Apply grid search for best parameters
params = {'randomforestregressor__n_estimators' : range(100, 500, 200),
'randomforestregressor__min_samples_split' : range(2, 10, 3)}
pipe = make_pipeline(reg)
grid = GridSearchCV(pipe, param_grid = params, scoring='mean_squared_error', n_jobs=-1, iid=False, cv=5)
reg = grid.fit(X_train, y_train)
print('Best MSE: ', grid.best_score_)
print('Best Parameters: ', grid.best_estimator_)
y_train_pred = reg.predict(X_train)
y_test_pred = reg.predict(X_test)
tr_err = mean_squared_error(y_train_pred, y_train)
ts_err = mean_squared_error(y_test_pred, y_test)
print(tr_err, ts_err)
results_train['random_forest'] = tr_err
results_test['random_forest'] = ts_err
Run Code Online (Sandbox Code Playgroud)
但是,当我运行此代码时,出现以下错误:
KeyError Traceback (most recent call last)
~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in get_scorer(scoring)
359 else:
--> 360 scorer = SCORERS[scoring]
361 except KeyError:
KeyError: 'mean_squared_error'
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
<ipython-input-149-394cd9e0c273> in <module>
5 pipe = make_pipeline(reg)
6 grid = GridSearchCV(pipe, param_grid = params, scoring='mean_squared_error', n_jobs=-1, iid=False, cv=5)
----> 7 reg = grid.fit(X_train, y_train)
8 print('Best MSE: ', grid.best_score_)
9 print('Best Parameters: ', grid.best_estimator_)
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
71 FutureWarning)
72 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 73 return f(**kwargs)
74 return inner_f
75
~\anaconda3\lib\site-packages\sklearn\model_selection\_search.py in fit(self, X, y, groups, **fit_params)
652 cv = check_cv(self.cv, y, classifier=is_classifier(estimator))
653
--> 654 scorers, self.multimetric_ = _check_multimetric_scoring(
655 self.estimator, scoring=self.scoring)
656
~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in _check_multimetric_scoring(estimator, scoring)
473 if callable(scoring) or scoring is None or isinstance(scoring,
474 str):
--> 475 scorers = {"score": check_scoring(estimator, scoring=scoring)}
476 return scorers, False
477 else:
~\anaconda3\lib\site-packages\sklearn\utils\validation.py in inner_f(*args, **kwargs)
71 FutureWarning)
72 kwargs.update({k: arg for k, arg in zip(sig.parameters, args)})
---> 73 return f(**kwargs)
74 return inner_f
75
~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in check_scoring(estimator, scoring, allow_none)
403 "'fit' method, %r was passed" % estimator)
404 if isinstance(scoring, str):
--> 405 return get_scorer(scoring)
406 elif callable(scoring):
407 # Heuristic to ensure user has not passed a metric
~\anaconda3\lib\site-packages\sklearn\metrics\_scorer.py in get_scorer(scoring)
360 scorer = SCORERS[scoring]
361 except KeyError:
--> 362 raise ValueError('%r is not a valid scoring value. '
363 'Use sorted(sklearn.metrics.SCORERS.keys()) '
364 'to get valid options.' % scoring)
ValueError: 'mean_squared_error' is not a valid scoring value. Use sorted(sklearn.metrics.SCORERS.keys()) to get valid options.
Run Code Online (Sandbox Code Playgroud)
所以,我尝试通过删除scoring='mean_squared_error'from 来运行它GridSearchCV(pipe, param_grid = params, scoring='mean_squared_error', n_jobs=-1, iid=False, cv=5)。当我这样做时,代码运行完美,并给出了足够好的训练和测试错误。
无论如何,我无法弄清楚为什么函数中的scoring='mean_squared_error'参数GridSearchCV会引发该错误。我究竟做错了什么?
| 归档时间: |
|
| 查看次数: |
4889 次 |
| 最近记录: |