Kubernetes 上的 Spark:执行器 Pod 默默地被杀死

rab*_*ens 5 apache-spark kubernetes

我正在 kubernetes 上运行 Spark 作业,当数据量较大时,我经常会遇到“执行器丢失”的情况,并且执行器被杀死,作业失败。我已经kubectl logs -f对所有正在运行的执行程序 Pod 执行了 a 操作,但我从未看到抛出任何异常(我希望出现类似OutOfMemoryError或类似的情况)。Pod 会突然停止计算,然后被直接删除,因此它们甚至不会保持Error能够进行挖掘和故障排除的状态。他们就消失了。

我应该如何解决这个问题?在我看来,Kubernetes 本身会杀死 Pod,因为我认为它们超出了某些边界,但根据我的理解,Pod 应该处于Evicted状态(或者不应该?)

它似乎与内存使用有关,因为当我打开spark.executor.memory我的作业时,它会运行到完成(但执行器数量少得多,导致速度低得多)。

当作为主服务器运行作业时,local[*]即使内存设置低得多,它也会运行完成。

后续1

我仅使用一个执行器开始这项工作,并kubectl logs -f在执行器 Pod 上执行了一项操作,并观察了驱动程序的输出(在客户端模式下运行)。首先,驱动程序上出现“执行程序丢失”消息,然后执行程序 Pod 直接退出,没有任何异常或错误消息。

后续2

当执行器死亡时,驱动程序的日志如下所示:

20/08/18 10:36:40 INFO TaskSchedulerImpl: Removed TaskSet 15.0, whose tasks have all completed, from pool
20/08/18 10:36:40 INFO TaskSetManager: Starting task 3.0 in stage 18.0 (TID 1554, 10.244.1.64, executor 1, partition 3, NODE_LOCAL, 7717 bytes)
20/08/18 10:36:40 INFO DAGScheduler: ShuffleMapStage 15 (parquet at DataTasks.scala:208) finished in 5.913 s
20/08/18 10:36:40 INFO DAGScheduler: looking for newly runnable stages
20/08/18 10:36:40 INFO DAGScheduler: running: Set(ShuffleMapStage 18)
20/08/18 10:36:40 INFO DAGScheduler: waiting: Set(ShuffleMapStage 20, ShuffleMapStage 21, ResultStage 22)
20/08/18 10:36:40 INFO DAGScheduler: failed: Set()
20/08/18 10:36:40 INFO BlockManagerInfo: Added broadcast_11_piece0 in memory on 10.244.1.64:43809 (size: 159.0 KiB, free: 2.2 GiB)
20/08/18 10:36:40 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 1 to 10.93.111.35:20221
20/08/18 10:36:41 INFO MapOutputTrackerMasterEndpoint: Asked to send map output locations for shuffle 3 to 10.93.111.35:20221
20/08/18 10:36:49 INFO KubernetesClusterSchedulerBackend$KubernetesDriverEndpoint: Disabling executor 1.
20/08/18 10:36:49 INFO DAGScheduler: Executor lost: 1 (epoch 12)
20/08/18 10:36:49 INFO BlockManagerMasterEndpoint: Trying to remove executor 1 from BlockManagerMaster.
20/08/18 10:36:49 INFO BlockManagerMasterEndpoint: Removing block manager BlockManagerId(1, 10.244.1.64, 43809, None)
20/08/18 10:36:49 INFO BlockManagerMaster: Removed 1 successfully in removeExecutor
20/08/18 10:36:49 INFO DAGScheduler: Shuffle files lost for executor: 1 (epoch 12)
Run Code Online (Sandbox Code Playgroud)

在执行器上,它看起来像这样:

20/08/18 10:36:40 INFO Executor: Running task 3.0 in stage 18.0 (TID 1554)
20/08/18 10:36:40 INFO TorrentBroadcast: Started reading broadcast variable 11 with 1 pieces (estimated total size 4.0 MiB)
20/08/18 10:36:40 INFO MemoryStore: Block broadcast_11_piece0 stored as bytes in memory (estimated size 159.0 KiB, free 2.2 GiB)
20/08/18 10:36:40 INFO TorrentBroadcast: Reading broadcast variable 11 took 7 ms
20/08/18 10:36:40 INFO MemoryStore: Block broadcast_11 stored as values in memory (estimated size 457.3 KiB, free 2.2 GiB)
20/08/18 10:36:40 INFO MapOutputTrackerWorker: Don't have map outputs for shuffle 1, fetching them
20/08/18 10:36:40 INFO MapOutputTrackerWorker: Doing the fetch; tracker endpoint = NettyRpcEndpointRef(spark://MapOutputTracker@node01.maas:34271)
20/08/18 10:36:40 INFO MapOutputTrackerWorker: Got the output locations
20/08/18 10:36:40 INFO ShuffleBlockFetcherIterator: Getting 30 (142.3 MiB) non-empty blocks including 30 (142.3 MiB) local and 0 (0.0 B) host-local and 0 (0.0 B) remote blocks
20/08/18 10:36:40 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 0 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 3.082897 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 5.132359 ms
20/08/18 10:36:41 INFO MapOutputTrackerWorker: Don't have map outputs for shuffle 3, fetching them
20/08/18 10:36:41 INFO MapOutputTrackerWorker: Doing the fetch; tracker endpoint = NettyRpcEndpointRef(spark://MapOutputTracker@node01.maas:34271)
20/08/18 10:36:41 INFO MapOutputTrackerWorker: Got the output locations
20/08/18 10:36:41 INFO ShuffleBlockFetcherIterator: Getting 0 (0.0 B) non-empty blocks including 0 (0.0 B) local and 0 (0.0 B) host-local and 0 (0.0 B) remote blocks
20/08/18 10:36:41 INFO ShuffleBlockFetcherIterator: Started 0 remote fetches in 0 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 6.770762 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 3.150645 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 2.81799 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 2.989827 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 3.024777 ms
20/08/18 10:36:41 INFO CodeGenerator: Code generated in 4.32011 ms
Run Code Online (Sandbox Code Playgroud)

然后,执行者退出。

奇怪的是:阶段 18.0 从任务 3.0 开始,而不是从 1.0 开始

后续3

我现在将执行程序日志级别更改为,DEBUG并且在执行程序退出之前我注意到一些有趣的事情:

20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 KiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 KiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@4ef2dc4a
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 64.0 KiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@4ef2dc4a
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 128.0 KiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 64.0 KiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 256.0 KiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 128.0 KiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 512.0 KiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 256.0 KiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 1024.0 KiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 512.0 KiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 2.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 1024.0 KiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 acquired 4.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:26 DEBUG TaskMemoryManager: Task 1155 release 2.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:27 DEBUG TaskMemoryManager: Task 1155 acquired 8.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:27 DEBUG TaskMemoryManager: Task 1155 release 4.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:27 DEBUG TaskMemoryManager: Task 1155 acquired 16.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:27 DEBUG TaskMemoryManager: Task 1155 release 8.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:27 DEBUG TaskMemoryManager: Task 1155 acquired 32.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:27 DEBUG TaskMemoryManager: Task 1155 release 16.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:29 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:30 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:30 DEBUG TaskMemoryManager: Task 1155 release 32.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:34 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:34 DEBUG TaskMemoryManager: Task 1155 acquired 128.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:34 DEBUG TaskMemoryManager: Task 1155 release 64.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:36 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:36 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:37 DEBUG TaskMemoryManager: Task 1155 acquired 256.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:37 DEBUG TaskMemoryManager: Task 1155 release 128.0 MiB from org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d 20/08/18 14:19:37 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:38 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:38 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:39 DEBUG TaskMemoryManager: Task 1155 acquired 64.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
20/08/18 14:19:39 DEBUG TaskMemoryManager: Task 1155 acquired 512.0 MiB for org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter@5050038d
Run Code Online (Sandbox Code Playgroud)

我通过 给了执行器 4GB 内存spark.executor.memory,这些分配总计 1344MB。4GB内存,默认内存分割设置,40%是1400MB。

我可以以某种方式限制需要多少内存UnsafeExternalSorter吗?

后续4

我遇到了一个罕见的情况,由于某种原因,Spark 没有杀死“已完成”的执行器,而我看到 Pod 是OOMKilled. 似乎spark.executor.memory既设置了 Pod 请求的内存,又设置了 Spark 执行器中的内存配置。

rab*_*ens 2

后续4就是答案。我再次运行该作业kubectl get pod -w,我看到执行器 Pod 开始运行OOMKilled。我现在正在使用spark.kubernetes.memoryOverheadFactor=0.5和运行spark.memory.fraction=0.2,调整得spark.executor.memory如此之高,以至于每个节点几乎启动一个执行程序,并且我将spark.executor.cores每个节点的核心数设置为减 1。这样,它就可以运行。

我还调整了我的算法,因为它有很大的分区偏差,并且必须进行一些不容易并行化的计算,这导致了很多洗牌。