Nsight Compute 中使用的术语

rm9*_*m95 1 optimization cuda nsight-compute

两个问题:

  1. 根据 Nsight Compute 的说法,我的内核是受计算限制的。相对于峰值性能的 SM 利用率为 74%,内存利用率为 47%。然而,当我查看每个管道利用率时,LSU 利用率远高于其他管道(75% 与 10-15%)。这难道不表明我的内核受内存限制吗?如果计算和内存资源的利用率与管道利用率不对应,我不知道如何解释这些术语。

  2. 调度程序每 4 个周期才发出一次,这是否意味着我的内核受到延迟限制?人们通常根据计算和内存资源的利用率来定义它。两者之间是什么关系?

Gre*_*ith 7

在 CC7.5 GPU 上的 Nsight 计算中

SM%由sm__throughput定义,Memory%由gpu__compute_memory_throughtput定义

sm_throughput 是以下指标的最大值:

  • sm__指令吞吐量
    • sm__inst_执行
    • sm__issue_active
    • sm__mio_inst_发行
    • sm__pipe_alu_cycles_active
    • sm__inst_execulated_pipe_cbu_pred_on_any
    • sm__pipe_fp64_cycles_active
    • sm__pipe_tensor_cycles_active
    • sm__inst_executed_pipe_xu
    • sm__pipe_fma_cycles_active
    • sm__inst_executed_pipe_fp16
    • sm__pipe_shared_cycles_active
    • sm__inst_executed_pipe_uniform
    • sm__instruction_throughput_internal_activity
  • sm__内存吞吐量
    • idc__request_cycles_active
    • sm__inst_executed_pipe_adu
    • sm__inst_executed_pipe_ipa
    • sm__inst_executed_pipe_lsu
    • sm__inst_executed_pipe_tex
    • sm__mio_pq_read_cycles_active
    • sm__mio_pq_write_cycles_active
    • sm__mio2rf_writeback_active
    • sm__内存_吞吐量_内部_活动

gpu__compute_memory_throughput 是以下指标的最大值:

  • gpu__compute_内存_访问_吞吐量
    • l1tex__data_bank_reads
    • l1tex__data_bank_writes
    • l1tex__data_pipe_lsu_wavefronts
    • l1tex__data_pipe_tex_wavefronts
    • l1tex__f_波前
    • lts__d_atomic_input_cycles_active
    • lts__d_扇区
    • lts__t_扇区
    • lts__t_tag_requests
    • gpu__compute_memory_access_throughput_internal_activity
  • gpu__compute_内存_访问_吞吐量
  • l1tex__lsuin_requests
    • l1tex__texin_sm2tex_req_cycles_active
    • l1tex__lsu_writeback_active
    • l1tex__tex_writeback_active
    • l1tex__m_l1tex2xbar_req_cycles_active
    • l1tex__m_xbar2l1tex_read_sectors
    • lts__lts2xbar_cycles_active
    • lts__xbar2lts_cycles_active
    • lts__d_sectors_fill_device
    • lts__d_sectors_fill_sysmem
    • gpu__dram_吞吐量
    • gpu__compute_memory_request_throughput_internal_activity

在您的情况下,限制器是 sm__inst_execulated_pipe_lsu 这是指令吞吐量。如果您查看sections/SpeedOfLight.py,延迟界限被定义为 sm__throughput 和 gpu__compute_memory_throuhgput < 60%。

某些指令流水线集的吞吐量较低,例如 fp64、xu 和 lsu(因芯片而异)。管道利用率是 sm__throughput 的一部分。为了提高性能,选项有:

  1. 减少超额订阅管道的指令,或者
  2. 发出不同类型的指令以使用空发出周期。

产生故障

从 Nsight Compute 2020.1 开始,没有一个简单的命令行可以在不运行分析会话的情况下生成列表。现在,您可以使用收集一个吞吐量指标breakdown:<throughput metric>avg.pct_of_peak_sustained.elapsed并解析输出以获取子指标名称。

例如:

ncu.exe --csv --metrics breakdown:sm__throughput.avg.pct_of_peak_sustained_elapsed --details-all -c 1 cuda_application.exe
Run Code Online (Sandbox Code Playgroud)

生成:

"ID","Process ID","Process Name","Host Name","Kernel Name","Kernel Time","Context","Stream","Section Name","Metric Name","Metric Unit","Metric Value"
"0","33396","cuda_application.exe","127.0.0.1","kernel()","2020-Aug-20 13:26:26","1","7","Command line profiler metrics","gpu__dram_throughput.avg.pct_of_peak_sustained_elapsed","%","0.38"
"0","33396","cuda_application.exe","127.0.0.1","kernel()","2020-Aug-20 13:26:26","1","7","Command line profiler metrics","l1tex__data_bank_reads.avg.pct_of_peak_sustained_elapsed","%","0.05"
"0","33396","cuda_application.exe","127.0.0.1","kernel()","2020-Aug-20 13:26:26","1","7","Command line profiler metrics","l1tex__data_bank_writes.avg.pct_of_peak_sustained_elapsed","%","0.05"
...
Run Code Online (Sandbox Code Playgroud)

该关键字breakdown可以在 Nsight Compute 部分文件中使用来扩展吞吐量指标。这在 SpeedOfLight. 部分中使用。

  • 我更新了答案以展示如何使用命令行生成故障,并请求 Nsight Compute 团队添加离线命令行来生成信息。 (2认同)