将 Pandas 数据帧转换为固定大小的段数组

sup*_*ask 5 python multidimensional-array python-3.x pandas numpy-ndarray

我正在努力将我的数据帧转换成一组固定大小的片段,我应该将这些片段提供给卷积神经网络。具体来说,我想将每个包含段 sizeddfm数组列表转换为(1,5,4)。所以最后,我会有一个(m,1,5,4)数组。

为了澄清我的问题,我使用 this 进行解释MWE。假设这是我的df

df = {
    'id': [1,1,1,1,1,1,1,1,1,1,1,1],
'speed': [17.63,17.63,0.17,1.41,0.61,0.32,0.18,0.43,0.30,0.46,0.75,0.37],
'acc': [0.00,-0.09,1.24,-0.80,-0.29,-0.14,0.25,-0.13,0.16,0.29,-0.38,0.27],
'jerk': [0.00,0.01,-2.04,0.51,0.15,0.39,-0.38,0.29,0.13,-0.67,0.65,0.52],
'bearing': [29.03,56.12,18.49,11.85,36.75,27.52,81.08,51.06,19.85,10.76,14.51,24.27],
'label' : [3,3,3,3,3,3,3,3,3,3,3,3] }

df = pd.DataFrame.from_dict(df)
Run Code Online (Sandbox Code Playgroud)

为此,我使用此功能:

def df_transformer(dataframe, chunk_size=5):
    
    grouped = dataframe.groupby('id')

    # initialize accumulators
    X, y = np.zeros([0, 1, chunk_size, 4]), np.zeros([0,])

    # loop over segments (id)
    for _, group in grouped:

        inputs = group.loc[:, 'speed':'bearing'].values
        label = group.loc[:, 'label'].values[0]

        # calculate number of splits
        N = len(inputs) // chunk_size

        if N > 0:
            inputs = np.array_split(inputs, [chunk_size]*N)
        else:
            inputs = [inputs]
        
        # loop over splits
        for inpt in inputs:
            inpt = np.pad(
                inpt, [(0, chunk_size-len(inpt)),(0, 0)], 
                mode='constant')
            # add each inputs split to accumulators
            X = np.concatenate([X, inpt[np.newaxis, np.newaxis]], axis=0)
            y = np.concatenate([y, label[np.newaxis]], axis=0) 

    return X, y
Run Code Online (Sandbox Code Playgroud)

df上述具有12行,所以如果正确地变换到预定的形式,我应该得到的形状的阵列(3,1,5,4)。在上面的函数中,少于 5 行的段被零填充,使段形(1,5,4).

目前,我对这个功能有两个问题:

  1. 该函数仅适用于我的 df 中少于 10 的行。

像这样(最后一行应该在下面填充零):

X , y = df_transformer(df[:9])
X
array([[[[ 1.763e+01,  0.000e+00,  0.000e+00,  2.903e+01],
         [ 1.763e+01, -9.000e-02,  1.000e-02,  5.612e+01],
         [ 1.700e-01,  1.240e+00, -2.040e+00,  1.849e+01],
         [ 1.410e+00, -8.000e-01,  5.100e-01,  1.185e+01],
         [ 6.100e-01, -2.900e-01,  1.500e-01,  3.675e+01]]],


       [[[ 3.200e-01, -1.400e-01,  3.900e-01,  2.752e+01],
         [ 1.800e-01,  2.500e-01, -3.800e-01,  8.108e+01],
         [ 4.300e-01, -1.300e-01,  2.900e-01,  5.106e+01],
         [ 3.000e-01,  1.600e-01,  1.300e-01,  1.985e+01],
         [ 0.000e+00,  0.000e+00,  0.000e+00,  0.000e+00]]]])
Run Code Online (Sandbox Code Playgroud)

但是在这种情况下引入了一个全零数组(段):

X , y = df_transformer(df[:10])
X
array([[[[ 1.763e+01,  0.000e+00,  0.000e+00,  2.903e+01],
         [ 1.763e+01, -9.000e-02,  1.000e-02,  5.612e+01],
         [ 1.700e-01,  1.240e+00, -2.040e+00,  1.849e+01],
         [ 1.410e+00, -8.000e-01,  5.100e-01,  1.185e+01],
         [ 6.100e-01, -2.900e-01,  1.500e-01,  3.675e+01]]],


       [[[ 0.000e+00,  0.000e+00,  0.000e+00,  0.000e+00],
         [ 0.000e+00,  0.000e+00,  0.000e+00,  0.000e+00],
         [ 0.000e+00,  0.000e+00,  0.000e+00,  0.000e+00],
         [ 0.000e+00,  0.000e+00,  0.000e+00,  0.000e+00],
         [ 0.000e+00,  0.000e+00,  0.000e+00,  0.000e+00]]],


       [[[ 3.200e-01, -1.400e-01,  3.900e-01,  2.752e+01],
         [ 1.800e-01,  2.500e-01, -3.800e-01,  8.108e+01],
         [ 4.300e-01, -1.300e-01,  2.900e-01,  5.106e+01],
         [ 3.000e-01,  1.600e-01,  1.300e-01,  1.985e+01],
         [ 4.600e-01,  2.900e-01, -6.700e-01,  1.076e+01]]]])
Run Code Online (Sandbox Code Playgroud)
  1. 如果我传递一个整体,该函数将失败df(我不明白错误,但它似乎与少于 5 行的段的填充有关)。

所以在这种情况下,我收到index can't contain negative values错误:

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-5-1fc559db37eb> in <module>()
----> 1 X , y = df_transformer(df)

2 frames
<ipython-input-4-9e1c49985863> in df_transformer(dataframe, chunk_size)
     24             inpt = np.pad(
     25                 inpt, [(0, chunk_size-len(inpt)),(0, 0)],
---> 26                 mode='constant')
     27             # add each inputs split to accumulators
     28             X = np.concatenate([X, inpt[np.newaxis, np.newaxis]], axis=0)

<__array_function__ internals> in pad(*args, **kwargs)

/usr/local/lib/python3.6/dist-packages/numpy/lib/arraypad.py in pad(array, pad_width, mode, **kwargs)
    746 
    747     # Broadcast to shape (array.ndim, 2)
--> 748     pad_width = _as_pairs(pad_width, array.ndim, as_index=True)
    749 
    750     if callable(mode):

/usr/local/lib/python3.6/dist-packages/numpy/lib/arraypad.py in _as_pairs(x, ndim, as_index)
    517 
    518     if as_index and x.min() < 0:
--> 519         raise ValueError("index can't contain negative values")
    520 
    521     # Converting the array with `tolist` seems to improve performance

ValueError: index can't contain negative values
Run Code Online (Sandbox Code Playgroud)

预期输出:

X , y = df_transformer(df)
X
array([[[[ 1.763e+01,  0.000e+00,  0.000e+00,  2.903e+01],
         [ 1.763e+01, -9.000e-02,  1.000e-02,  5.612e+01],
         [ 1.700e-01,  1.240e+00, -2.040e+00,  1.849e+01],
         [ 1.410e+00, -8.000e-01,  5.100e-01,  1.185e+01],
         [ 6.100e-01, -2.900e-01,  1.500e-01,  3.675e+01]]],

       [[[ 3.200e-01, -1.400e-01,  3.900e-01,  2.752e+01],
         [ 1.800e-01,  2.500e-01, -3.800e-01,  8.108e+01],
         [ 4.300e-01, -1.300e-01,  2.900e-01,  5.106e+01],
         [ 3.000e-01,  1.600e-01,  1.300e-01,  1.985e+01],
         [ 4.600e-01,  2.900e-01, -6.700e-01,  1.076e+01]]],

       [[[ 7.500e-01,  -3.800e-01,  6.500e-01,  1.451e+01],
         [ 3.700e-01,  2.700e-01,  5.200e-01,  2.427e+01],
         [ 0.000e+00,  0.000e+00,  0.000e+00,  0.000e+00],
         [ 0.000e+00,  0.000e+00,  0.000e+00,  0.000e+00],
         [ 0.000e+00,  0.000e+00,  0.000e+00,  0.000e+00]]]])
Run Code Online (Sandbox Code Playgroud)

有人可以帮我解决这个问题吗?上面的 WME 可以很好地重现此错误。

编辑

RichieV 的回答也有一个错误。虽然它在给定MWE的情况下工作,但在下面的情况下它没有完成正确的任务(扩展df两次

its size):
df = {
    'id': [1]*12+[2]*12,
    'speed': [17.63,17.63,0.17,1.41,0.61,0.32,0.18,0.43,0.30,0.46,0.75,0.37]*2,
    'acc': [0.00,-0.09,1.24,-0.80,-0.29,-0.14,0.25,-0.13,0.16,0.29,-0.38,0.27]*2,
    'jerk': [0.00,0.01,-2.04,0.51,0.15,0.39,-0.38,0.29,0.13,-0.67,0.65,0.52]*2,
    'bearing': [29.03,56.12,18.49,11.85,36.75,27.52,81.08,51.06,19.85,10.76,14.51,24.27]*2,
    'label' : [3,3,3,3,3,3,3,3,3,3,3,3]*2 }
df = pd.DataFrame.from_dict(df)

X, y = df_transformer(df, chunk_size=5)
print(X[:3])

[[[[ 1.763e+01  0.000e+00  0.000e+00  2.903e+01]
   [ 0.000e+00  0.000e+00  0.000e+00  0.000e+00]
   [ 0.000e+00  0.000e+00  0.000e+00  0.000e+00]
   [ 0.000e+00  0.000e+00  0.000e+00  0.000e+00]
   [ 3.700e-01  2.700e-01  5.200e-01  2.427e+01]]]


 [[[ 7.500e-01 -3.800e-01  6.500e-01  1.451e+01]
   [ 3.000e-01  1.600e-01  1.300e-01  1.985e+01]
   [ 4.600e-01  2.900e-01 -6.700e-01  1.076e+01]
   [ 1.800e-01  2.500e-01 -3.800e-01  8.108e+01]
   [ 3.200e-01 -1.400e-01  3.900e-01  2.752e+01]]]


 [[[ 6.100e-01 -2.900e-01  1.500e-01  3.675e+01]
   [ 1.410e+00 -8.000e-01  5.100e-01  1.185e+01]
   [ 1.700e-01  1.240e+00 -2.040e+00  1.849e+01]
   [ 1.763e+01 -9.000e-02  1.000e-02  5.612e+01]
   [ 4.300e-01 -1.300e-01  2.900e-01  5.106e+01]]]]
Run Code Online (Sandbox Code Playgroud)

请注意,第一个元素与答案中的元素不同(在第 2、3 和 4 行中得到全零。