sup*_*ask 5 python multidimensional-array python-3.x pandas numpy-ndarray
我正在努力将我的数据帧转换成一组固定大小的片段,我应该将这些片段提供给卷积神经网络。具体来说,我想将每个包含段 sizeddf的m数组列表转换为(1,5,4)。所以最后,我会有一个(m,1,5,4)数组。
为了澄清我的问题,我使用 this 进行解释MWE。假设这是我的df:
df = {
'id': [1,1,1,1,1,1,1,1,1,1,1,1],
'speed': [17.63,17.63,0.17,1.41,0.61,0.32,0.18,0.43,0.30,0.46,0.75,0.37],
'acc': [0.00,-0.09,1.24,-0.80,-0.29,-0.14,0.25,-0.13,0.16,0.29,-0.38,0.27],
'jerk': [0.00,0.01,-2.04,0.51,0.15,0.39,-0.38,0.29,0.13,-0.67,0.65,0.52],
'bearing': [29.03,56.12,18.49,11.85,36.75,27.52,81.08,51.06,19.85,10.76,14.51,24.27],
'label' : [3,3,3,3,3,3,3,3,3,3,3,3] }
df = pd.DataFrame.from_dict(df)
Run Code Online (Sandbox Code Playgroud)
为此,我使用此功能:
def df_transformer(dataframe, chunk_size=5):
grouped = dataframe.groupby('id')
# initialize accumulators
X, y = np.zeros([0, 1, chunk_size, 4]), np.zeros([0,])
# loop over segments (id)
for _, group in grouped:
inputs = group.loc[:, 'speed':'bearing'].values
label = group.loc[:, 'label'].values[0]
# calculate number of splits
N = len(inputs) // chunk_size
if N > 0:
inputs = np.array_split(inputs, [chunk_size]*N)
else:
inputs = [inputs]
# loop over splits
for inpt in inputs:
inpt = np.pad(
inpt, [(0, chunk_size-len(inpt)),(0, 0)],
mode='constant')
# add each inputs split to accumulators
X = np.concatenate([X, inpt[np.newaxis, np.newaxis]], axis=0)
y = np.concatenate([y, label[np.newaxis]], axis=0)
return X, y
Run Code Online (Sandbox Code Playgroud)
在df上述具有12行,所以如果正确地变换到预定的形式,我应该得到的形状的阵列(3,1,5,4)。在上面的函数中,少于 5 行的段被零填充,使段形(1,5,4).
目前,我对这个功能有两个问题:
像这样(最后一行应该在下面填充零):
X , y = df_transformer(df[:9])
X
array([[[[ 1.763e+01, 0.000e+00, 0.000e+00, 2.903e+01],
[ 1.763e+01, -9.000e-02, 1.000e-02, 5.612e+01],
[ 1.700e-01, 1.240e+00, -2.040e+00, 1.849e+01],
[ 1.410e+00, -8.000e-01, 5.100e-01, 1.185e+01],
[ 6.100e-01, -2.900e-01, 1.500e-01, 3.675e+01]]],
[[[ 3.200e-01, -1.400e-01, 3.900e-01, 2.752e+01],
[ 1.800e-01, 2.500e-01, -3.800e-01, 8.108e+01],
[ 4.300e-01, -1.300e-01, 2.900e-01, 5.106e+01],
[ 3.000e-01, 1.600e-01, 1.300e-01, 1.985e+01],
[ 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00]]]])
Run Code Online (Sandbox Code Playgroud)
但是在这种情况下引入了一个全零数组(段):
X , y = df_transformer(df[:10])
X
array([[[[ 1.763e+01, 0.000e+00, 0.000e+00, 2.903e+01],
[ 1.763e+01, -9.000e-02, 1.000e-02, 5.612e+01],
[ 1.700e-01, 1.240e+00, -2.040e+00, 1.849e+01],
[ 1.410e+00, -8.000e-01, 5.100e-01, 1.185e+01],
[ 6.100e-01, -2.900e-01, 1.500e-01, 3.675e+01]]],
[[[ 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00],
[ 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00],
[ 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00],
[ 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00],
[ 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00]]],
[[[ 3.200e-01, -1.400e-01, 3.900e-01, 2.752e+01],
[ 1.800e-01, 2.500e-01, -3.800e-01, 8.108e+01],
[ 4.300e-01, -1.300e-01, 2.900e-01, 5.106e+01],
[ 3.000e-01, 1.600e-01, 1.300e-01, 1.985e+01],
[ 4.600e-01, 2.900e-01, -6.700e-01, 1.076e+01]]]])
Run Code Online (Sandbox Code Playgroud)
df(我不明白错误,但它似乎与少于 5 行的段的填充有关)。所以在这种情况下,我收到index can't contain negative values错误:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-5-1fc559db37eb> in <module>()
----> 1 X , y = df_transformer(df)
2 frames
<ipython-input-4-9e1c49985863> in df_transformer(dataframe, chunk_size)
24 inpt = np.pad(
25 inpt, [(0, chunk_size-len(inpt)),(0, 0)],
---> 26 mode='constant')
27 # add each inputs split to accumulators
28 X = np.concatenate([X, inpt[np.newaxis, np.newaxis]], axis=0)
<__array_function__ internals> in pad(*args, **kwargs)
/usr/local/lib/python3.6/dist-packages/numpy/lib/arraypad.py in pad(array, pad_width, mode, **kwargs)
746
747 # Broadcast to shape (array.ndim, 2)
--> 748 pad_width = _as_pairs(pad_width, array.ndim, as_index=True)
749
750 if callable(mode):
/usr/local/lib/python3.6/dist-packages/numpy/lib/arraypad.py in _as_pairs(x, ndim, as_index)
517
518 if as_index and x.min() < 0:
--> 519 raise ValueError("index can't contain negative values")
520
521 # Converting the array with `tolist` seems to improve performance
ValueError: index can't contain negative values
Run Code Online (Sandbox Code Playgroud)
预期输出:
X , y = df_transformer(df)
X
array([[[[ 1.763e+01, 0.000e+00, 0.000e+00, 2.903e+01],
[ 1.763e+01, -9.000e-02, 1.000e-02, 5.612e+01],
[ 1.700e-01, 1.240e+00, -2.040e+00, 1.849e+01],
[ 1.410e+00, -8.000e-01, 5.100e-01, 1.185e+01],
[ 6.100e-01, -2.900e-01, 1.500e-01, 3.675e+01]]],
[[[ 3.200e-01, -1.400e-01, 3.900e-01, 2.752e+01],
[ 1.800e-01, 2.500e-01, -3.800e-01, 8.108e+01],
[ 4.300e-01, -1.300e-01, 2.900e-01, 5.106e+01],
[ 3.000e-01, 1.600e-01, 1.300e-01, 1.985e+01],
[ 4.600e-01, 2.900e-01, -6.700e-01, 1.076e+01]]],
[[[ 7.500e-01, -3.800e-01, 6.500e-01, 1.451e+01],
[ 3.700e-01, 2.700e-01, 5.200e-01, 2.427e+01],
[ 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00],
[ 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00],
[ 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00]]]])
Run Code Online (Sandbox Code Playgroud)
有人可以帮我解决这个问题吗?上面的 WME 可以很好地重现此错误。
编辑
RichieV 的回答也有一个错误。虽然它在给定MWE的情况下工作,但在下面的情况下它没有完成正确的任务(扩展df两次
its size):
df = {
'id': [1]*12+[2]*12,
'speed': [17.63,17.63,0.17,1.41,0.61,0.32,0.18,0.43,0.30,0.46,0.75,0.37]*2,
'acc': [0.00,-0.09,1.24,-0.80,-0.29,-0.14,0.25,-0.13,0.16,0.29,-0.38,0.27]*2,
'jerk': [0.00,0.01,-2.04,0.51,0.15,0.39,-0.38,0.29,0.13,-0.67,0.65,0.52]*2,
'bearing': [29.03,56.12,18.49,11.85,36.75,27.52,81.08,51.06,19.85,10.76,14.51,24.27]*2,
'label' : [3,3,3,3,3,3,3,3,3,3,3,3]*2 }
df = pd.DataFrame.from_dict(df)
X, y = df_transformer(df, chunk_size=5)
print(X[:3])
[[[[ 1.763e+01 0.000e+00 0.000e+00 2.903e+01]
[ 0.000e+00 0.000e+00 0.000e+00 0.000e+00]
[ 0.000e+00 0.000e+00 0.000e+00 0.000e+00]
[ 0.000e+00 0.000e+00 0.000e+00 0.000e+00]
[ 3.700e-01 2.700e-01 5.200e-01 2.427e+01]]]
[[[ 7.500e-01 -3.800e-01 6.500e-01 1.451e+01]
[ 3.000e-01 1.600e-01 1.300e-01 1.985e+01]
[ 4.600e-01 2.900e-01 -6.700e-01 1.076e+01]
[ 1.800e-01 2.500e-01 -3.800e-01 8.108e+01]
[ 3.200e-01 -1.400e-01 3.900e-01 2.752e+01]]]
[[[ 6.100e-01 -2.900e-01 1.500e-01 3.675e+01]
[ 1.410e+00 -8.000e-01 5.100e-01 1.185e+01]
[ 1.700e-01 1.240e+00 -2.040e+00 1.849e+01]
[ 1.763e+01 -9.000e-02 1.000e-02 5.612e+01]
[ 4.300e-01 -1.300e-01 2.900e-01 5.106e+01]]]]
Run Code Online (Sandbox Code Playgroud)
请注意,第一个元素与答案中的元素不同(在第 2、3 和 4 行中得到全零。
| 归档时间: |
|
| 查看次数: |
111 次 |
| 最近记录: |