Ali*_*ati 2 anaconda google-colaboratory tf.keras
我使用迁移学习来训练模型。基本模型是efficientNet。你可以在这里读更多关于它的内容
from tensorflow import keras
from keras.models import Sequential,Model
from keras.layers import Dense,Dropout,Conv2D,MaxPooling2D,
Flatten,BatchNormalization, Activation
from keras.optimizers import RMSprop , Adam ,SGD
from keras.backend import sigmoid
Run Code Online (Sandbox Code Playgroud)
SwishActivation 类(激活):
def __init__(self, activation, **kwargs):
super(SwishActivation, self).__init__(activation, **kwargs)
self.__name__ = 'swish_act'
def swish_act(x, beta = 1):
return (x * sigmoid(beta * x))
from keras.utils.generic_utils import get_custom_objects
from keras.layers import Activation
get_custom_objects().update({'swish_act': SwishActivation(swish_act)})
Run Code Online (Sandbox Code Playgroud)
model = enet.EfficientNetB0(include_top=False, input_shape=(150,50,3), pooling='avg', weights='imagenet')
Run Code Online (Sandbox Code Playgroud)
x = model.output
x = BatchNormalization()(x)
x = Dropout(0.7)(x)
x = Dense(512)(x)
x = BatchNormalization()(x)
x = Activation(swish_act)(x)
x = Dropout(0.5)(x)
x = Dense(128)(x)
x = BatchNormalization()(x)
x = Activation(swish_act)(x)
x = Dense(64)(x)
x = Dense(32)(x)
x = Dense(16)(x)
# Output layer
predictions = Dense(1, activation="sigmoid")(x)
model_final = Model(inputs = model.input, outputs = predictions)
model_final.summary()
Run Code Online (Sandbox Code Playgroud)
我使用以下方法保存它:
from tensorflow import keras
from keras.models import Sequential,Model
from keras.layers import Dense,Dropout,Conv2D,MaxPooling2D,
Flatten,BatchNormalization, Activation
from keras.optimizers import RMSprop , Adam ,SGD
from keras.backend import sigmoid
Run Code Online (Sandbox Code Playgroud)
我尝试加载它时收到以下错误:
def __init__(self, activation, **kwargs):
super(SwishActivation, self).__init__(activation, **kwargs)
self.__name__ = 'swish_act'
def swish_act(x, beta = 1):
return (x * sigmoid(beta * x))
from keras.utils.generic_utils import get_custom_objects
from keras.layers import Activation
get_custom_objects().update({'swish_act': SwishActivation(swish_act)})
Run Code Online (Sandbox Code Playgroud)
我在尝试通过加载保存的模型进行推理时遇到了同样的错误。然后我也将effiecientNet库导入到推理笔记本中,错误就消失了。我的导入命令如下所示:
import efficientnet.keras as efn
Run Code Online (Sandbox Code Playgroud)
(请注意,如果您尚未安装 effiecientNet(不太可能),您可以使用!pip install efficientnet命令来安装。)
| 归档时间: |
|
| 查看次数: |
2048 次 |
| 最近记录: |