我正在使用 dcast 转置下表
date event user_id
25-07-2020 Create 3455
25-07-2020 Visit 3567
25-07-2020 Visit 3567
25-07-2020 Add 3567
25-07-2020 Add 3678
25-07-2020 Add 3678
25-07-2020 Create 3567
24-07-2020 Edit 3871
Run Code Online (Sandbox Code Playgroud)
我正在使用 dcast 转置以将我的事件作为列并计算 user_id
dae_summ <- dcast(ahoy_events, date ~ event, value.var="user_id")
但我没有得到唯一的用户 ID。它多次计算相同的 user_id。我该怎么做才能让一个 user_id 在同一日期和事件中只计算一次。
我们可以使用uniqueN来自data.table
library(data.table)
dcast(setDT(ahoy_events), date ~ event, fun.aggregate = uniqueN)
# date Add Create Edit Visit
#1: 24-07-2020 0 0 1 0
#2: 25-07-2020 2 2 0 1
Run Code Online (Sandbox Code Playgroud)
或使用pivot_widerfromtidyr并values_fn指定为n_distinct
library(tidyr)
library(dplyr)
ahoy_events %>%
pivot_wider(names_from = event, values_from = user_id,
values_fn = list(user_id = n_distinct), values_fill = list(user_id = 0))
# A tibble: 2 x 5
# date Create Visit Add Edit
# <chr> <int> <int> <int> <int>
#1 25-07-2020 2 1 2 0
#2 24-07-2020 0 0 0 1
Run Code Online (Sandbox Code Playgroud)
ahoy_events <- structure(list(date = c("25-07-2020", "25-07-2020", "25-07-2020",
"25-07-2020", "25-07-2020", "25-07-2020", "25-07-2020", "24-07-2020"
), event = c("Create", "Visit", "Visit", "Add", "Add", "Add",
"Create", "Edit"), user_id = c(3455L, 3567L, 3567L, 3567L, 3678L,
3678L, 3567L, 3871L)), class = "data.frame", row.names = c(NA,
-8L))
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
160 次 |
| 最近记录: |