nyk*_*nyk 4 r glmnet tidymodels
我使用tidymodels估计了glmnet逻辑回归。但我无法弄清楚tidymodels中密切相关的两件事:
以下是伪模型的代码。我尝试过tidy(),coef()但predict()都失败了。任何帮助都感激不尽。谢谢。
library(tidymodels)
#> -- Attaching packages --------------------------------------------------------------------------------------------------------------------------- tidymodels 0.1.0 --
#> v broom 0.7.0 v recipes 0.1.13
#> v dials 0.0.8 v rsample 0.0.7
#> v dplyr 1.0.0 v tibble 3.0.3
#> v ggplot2 3.3.2 v tune 0.1.1
#> v infer 0.5.2 v workflows 0.1.2
#> v parsnip 0.1.2 v yardstick 0.0.7
#> v purrr 0.3.4
#> -- Conflicts ------------------------------------------------------------------------------------------------------------------------------ tidymodels_conflicts() --
#> x purrr::discard() masks scales::discard()
#> x dplyr::filter() masks stats::filter()
#> x dplyr::lag() masks stats::lag()
#> x recipes::step() masks stats::step()
set.seed(1234)
train <- tibble(y = factor(sample(c(0,1), 1000, replace = TRUE)),
x1 = rnorm(1000),
x2 = rnorm(1000)
)
test <- tibble(y = factor(sample(c(0,1), 300, replace = TRUE)),
x1 = rnorm(300),
x2 = rnorm(300)
)
lr_cv <- vfold_cv(train)
lr_mod <- logistic_reg(penalty = tune(), mixture = 1) %>%
set_mode("classification") %>%
set_engine("glmnet")
lr_wf <- workflow() %>%
add_model(lr_mod) %>%
add_formula(y ~ .)
lr_grid <- tibble(penalty = 10^seq(-4,1, length.out = 5))
lr_tune <- tune_grid(lr_wf, resamples = lr_cv, grid = lr_grid, metrics = metric_set(roc_auc))
lr_best <- select_best(lr_tune)
lr_best
#> # A tibble: 1 x 2
#> penalty .config
#> <dbl> <chr>
#> 1 0.0001 Model1
lr_wf_final <- lr_wf %>% finalize_workflow(lr_best)
final_mod <- lr_wf_final %>% fit(train)
# the followings were tried but didn't work
lambda <- lr_best[1]
lambda
#> # A tibble: 1 x 1
#> penalty
#> <dbl>
#> 1 0.0001
predict(final.mod , s = lambda, type ="coefficients")[1:3 ,]
#> Error in predict(final.mod, s = lambda, type = "coefficients"): object 'final.mod' not found
tidy(final_mod)
#> # A tibble: 35 x 5
#> term step estimate lambda dev.ratio
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 1 -0.0560 0.0183 1.71e-14
#> 2 (Intercept) 2 -0.0561 0.0167 1.65e- 4
#> 3 (Intercept) 3 -0.0562 0.0152 3.02e- 4
#> 4 (Intercept) 4 -0.0562 0.0139 4.16e- 4
#> 5 (Intercept) 5 -0.0563 0.0126 5.10e- 4
#> 6 (Intercept) 6 -0.0564 0.0115 5.89e- 4
#> 7 (Intercept) 7 -0.0564 0.0105 6.54e- 4
#> 8 (Intercept) 8 -0.0565 0.00956 7.08e- 4
#> 9 (Intercept) 9 -0.0565 0.00871 7.53e- 4
#> 10 (Intercept) 10 -0.0566 0.00794 7.90e- 4
#> # ... with 25 more rows
coef(final_mod)
#> NULL
Run Code Online (Sandbox Code Playgroud)
由reprex 包(v0.3.0)于 2020-07-25 创建
我们最近添加了一些更新的支持来获取估计系数。
\nlibrary(tidymodels)\n#> \xe2\x94\x80\xe2\x94\x80 Attaching packages \xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80 tidymodels 0.1.1 \xe2\x94\x80\xe2\x94\x80\n#> \xe2\x9c\x93 broom 0.7.0 \xe2\x9c\x93 recipes 0.1.13 \n#> \xe2\x9c\x93 dials 0.0.8 \xe2\x9c\x93 rsample 0.0.7 \n#> \xe2\x9c\x93 dplyr 1.0.0 \xe2\x9c\x93 tibble 3.0.3 \n#> \xe2\x9c\x93 ggplot2 3.3.2 \xe2\x9c\x93 tidyr 1.1.0 \n#> \xe2\x9c\x93 infer 0.5.3 \xe2\x9c\x93 tune 0.1.1.9000\n#> \xe2\x9c\x93 modeldata 0.0.2 \xe2\x9c\x93 workflows 0.1.2 \n#> \xe2\x9c\x93 parsnip 0.1.2.9000 \xe2\x9c\x93 yardstick 0.0.7 \n#> \xe2\x9c\x93 purrr 0.3.4\n#> \xe2\x94\x80\xe2\x94\x80 Conflicts \xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80\xe2\x94\x80 tidymodels_conflicts() \xe2\x94\x80\xe2\x94\x80\n#> x purrr::discard() masks scales::discard()\n#> x dplyr::filter() masks stats::filter()\n#> x dplyr::lag() masks stats::lag()\n#> x recipes::step() masks stats::step()\n\nset.seed(1234)\ntrain <- tibble(y = factor(sample(c(0,1), 1000, replace = TRUE)),\n x1 = as.numeric(y) + rnorm(1000),\n x2 = rnorm(1000),\n x3 = rnorm(1000)\n)\n\nlr_cv <- vfold_cv(train)\nlr_grid <- tibble(penalty = 10^seq(-4,1, length.out = 5))\nlr_mod <- logistic_reg(penalty = tune(), mixture = 1) %>%\n set_mode("classification") %>%\n set_engine("glmnet")\n\nlr_wf <- workflow() %>%\n add_model(lr_mod) %>%\n add_formula(y ~ .) \n\nlr_best <- lr_wf %>%\n tune_grid(\n resamples = lr_cv,\n grid = lr_grid\n ) %>%\n select_best("roc_auc")\n\nlr_wf %>% \n finalize_workflow(lr_best) %>%\n fit(train) %>%\n pull_workflow_fit() %>%\n tidy()\n#> Loading required package: Matrix\n#> \n#> Attaching package: \'Matrix\'\n#> The following objects are masked from \'package:tidyr\':\n#> \n#> expand, pack, unpack\n#> Loaded glmnet 4.0-2\n#> # A tibble: 4 x 3\n#> term estimate penalty\n#> <chr> <dbl> <dbl>\n#> 1 (Intercept) -1.30 0.0316\n#> 2 x1 0.834 0.0316\n#> 3 x2 0 0.0316\n#> 4 x3 0 0.0316\nRun Code Online (Sandbox Code Playgroud)\n由reprex 包于 2020-07-30 创建(v0.3.0.9001)
\n提取系数的步骤是拉出拟合对象,然后对其进行整理。
\n如果您想保存此对象以供将来使用,您可以只保存这些系数(毕竟它是一个线性模型),也可以将最终确定的拟合工作流程保存为二进制对象,可以从中进行预测。
\n