opencv 复选框检测

Sha*_*r P 1 python opencv image-processing contour computer-vision

我一直在尝试检测复选框。虽然我能够检测到其他图像中的方形轮廓,但我无法获取该特定图像的轮廓。请帮我检测复选框。

输入图像: 输入图像

这是我的代码,

for myfile in files:
    image=cv2.imread(myfile)
    image = cv2.resize(image, (180,60), interpolation = cv2.INTER_AREA)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    #apply otsu's threshold
    thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]
        #setting up threshold values
    threshold_max_area = 300
    threshold_min_area = 10
 #finding contours in the image
    cnts = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if len(cnts) == 2 else cnts[1]
#getting the coordinates for each checkbox
    count=0
    centers=[]
    for c in cnts:
        peri = cv2.arcLength(c, True)
        approx = cv2.approxPolyDP(c, 0.035 * peri, True)
        x,y,w,h = cv2.boundingRect(approx)
        aspect_ratio = w / float(h)
        area = cv2.contourArea(c) 
        if len(approx) == 4 and area < threshold_max_area and area > threshold_min_area and (aspect_ratio >= 0.9 and aspect_ratio <= 1.1):
            centers.append([x,y,x+w,y+h]) 
        count=count+1
    print(centers)
    
cv2.imshow(" ",image)
cv2.waitKey()
Run Code Online (Sandbox Code Playgroud)

Sre*_*ran 5

这是解决该问题的一种方法。

第 1 步:二值化

import os
import cv2
import numpy as np
import pandas as pd

### reading input image
image_path='test_sample.jpg'
image=cv2.imread(image_path)

### converting BGR to Grayscale
gray_scale=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)

### Binarising image
th1,img_bin = cv2.threshold(gray_scale,180,225,cv2.THRESH_OTSU)

Run Code Online (Sandbox Code Playgroud)

二值图像:

二值图像

第二步:寻找水平线和垂直线

### defining kernels

lWidth = 2
lineMinWidth = 15

kernal1 = np.ones((lWidth,lWidth), np.uint8)
kernal1h = np.ones((1,lWidth), np.uint8)
kernal1v = np.ones((lWidth,1), np.uint8)

kernal6 = np.ones((lineMinWidth,lineMinWidth), np.uint8)
kernal6h = np.ones((1,lineMinWidth), np.uint8)
kernal6v = np.ones((lineMinWidth,1), np.uint8)

### finding horizontal lines
img_bin_h = cv2.morphologyEx(~img_bin, cv2.MORPH_CLOSE, kernal1h) # bridge small gap in horizonntal lines
img_bin_h = cv2.morphologyEx(img_bin_h, cv2.MORPH_OPEN, kernal6h) # kep ony horiz lines by eroding everything else in hor direction
Run Code Online (Sandbox Code Playgroud)

水平线:

水平线

## detect vert lines
img_bin_v = cv2.morphologyEx(~img_bin, cv2.MORPH_CLOSE, kernal1v)  # bridge small gap in vert lines
img_bin_v = cv2.morphologyEx(img_bin_v, cv2.MORPH_OPEN, kernal6v)# kep ony vert lines by eroding everything else in vert direction
Run Code Online (Sandbox Code Playgroud)

垂直线:

垂直线

第三步:结合水平线和垂直线

def fix(img):
    img[img>127]=255
    img[img<127]=0
    return img
img_bin_final = fix(fix(img_bin_h)|fix(img_bin_v))

Run Code Online (Sandbox Code Playgroud)

组合二进制输出:

二进制最终

第 4 步:使用连通分量查找矩形

### getting labels
ret, labels, stats,centroids = cv2.connectedComponentsWithStats(~img_bin_final, connectivity=8, ltype=cv2.CV_32S)

### drawing recangles for visualisation
for x,y,w,h,area in stats[2:]:
    cv2.rectangle(image,(x,y),(x+w,y+h),(0,0,255),2)
Run Code Online (Sandbox Code Playgroud)

最终输出: 最终输出